CHARLES WILLIAMS STREAM, WETLAND, AND BUFFER SITE DMS Project No. 80

MONITORING YEAR 4 (2016) Construction Completed February 2013 Planting Completed February 2014

Randolph County, NC State Construction Project No. 07-07125-01A

Prepared for the NC Department of Environmental Quality Division of Mitigation Services

> 1652 Mail Service Center Raleigh, NC 27699-1652

November 2016

Prepared by:

1151 SE Cary Parkway, Suite 101 Cary, NC 27518 919.557.0929 www.ecologicaleng.com

Davidlo-Cooper

David G. Cooper, Project Scientist

Under Contract With:

This assessment and report are consistent with NCDENR Division of Mitigation Services Template Version 1.4 (11/07/11) for Monitoring Reports.

TABLE OF CONTENTS

		<u>1 age</u>
1.0 EXECU	IVE SUMMARY/PROJECT ABSTRACT	1
1.1	Goals and Objectives	
1.2	Background Summary	
1.3	Vegetation Condition and Comparison to Success Criteria	
1.4	Stream Stability/Condition and Comparison to Success Criteria	
1.5	Wetland Condition and Performance Relative to Success Criteria	
1.6	Other Information	3
2.0 METHO	DOLOGY	5
3.0 REFERE	NCES	6
	A. Project Vicinity Map and Background Tables 1. Vicinity Map	
	1. Project Components and Mitigation Credits	
	2. Project Activity and Reporting History	
	3. Project Contact Table	
Table	4. Project Baseline Information and Attributes	
APPENDIX	B. Visual Assessment Data	
Figure	2. Mitigation Components	
Eigure	2 Current Condition Plan View (CCPV)	

Page

Figure 3. Current Condition Plan View (CCPV) Table 5. Visual Stream Morphology Stability Assessment Table Table 6. Vegetation Condition Assessment Table Photograph Comparisons

APPENDIX C. Vegetation Plot Data

Planted Vegetation Summary Proposed Supplemental Planting Letter **Original Planting List from DMS** Table 7. Vegetation Plot Mitigation Success Summary Table Table 8. CVS Vegetation Metadata Table Table 9. CVS Stem Count Total and Planted by Plot and Species

APPENDIX D. Stream Survey Data

Cross Section Plot Exhibits Longitudinal Profile Plot Exhibit **Cross Section Pebble Count Exhibits** Table 10. Baseline Stream Data Summary Table 11. Monitoring Data

APPENDIX E. Hydrology Data

Table 12. Verification of Bankfull Events 2016 Precipitation Data Chart

APPENDIX F. Detailed Thalweg Profile

Detailed Thalweg Longitudinal Profile Plot Exhibits

1.0 EXECUTIVE SUMMARY/ PROJECT ABSTRACT

The Charles Williams Stream, Wetland and Buffer Site, hereinafter referred to as the "Project Site" or "Site," is located in Randolph County, North Carolina, within US Geological Survey (USGS) 8-digit Hydrologic Unit Code (HUC) 03030003 and NC Division of Water Resources (NCDWR) sub-basin 03-06-09 of the Cape Fear River Basin (Figure 1). The project involved the enhancement of 1,850 linear feet of an unnamed tributary (UT) to Sandy Creek, 2.2 acres of wetlands and 8.8 acres of riparian buffer. The Site is protected for perpetuity under a conservation easement purchased from Mr. Charles Williams in 2006. Project restoration components, activity and reporting history, contacts and attribute data are all provided in Appendix A.

1.1 Goals and Objectives

The Project's goals were to:

- reduce nutrient and sediment water quality stressors;
- provide for uplift in water quality functions;
- improve instream and wetland aquatic habitats, including riparian terrestrial habitats; and,
- provide for greater overall instream and wetland habitat complexity and quality.

Stream enhancement, the primary component, served as the dominant input for achieving this goal.

No restoration goals were identified in the Cape Fear River Basinwide Management Plan (NCDWQ, 2005) with regard to the Sandy Creek watershed. There were no sources or stressors listed for the watershed area associated with the Project Site. The NC Department of Environmental Quality (NCDEQ) Division of Mitigation Services (DMS) develops River Basin Restoration Priorities (RBRP) to guide its restoration activities within each of the state's 54 cataloging units. RBRPs delineate specific watersheds that exhibit both the need and opportunity for wetland, stream and riparian buffer restoration. These watersheds are called Targeted Local Watersheds (TLWs) and receive priority for DMS planning and restoration project funds. The 2009 Draft Cape Fear River RBRP identified HUC 03030003020010, which includes the Project Site, as a Targeted Local Watershed. The following information is taken directly from the RBRP. "...This is a largely rural hydrologic unit (HU). The main stream, Sandy Creek, flows through Randolph County to Sandy Creek Reservoir, a drinking water supply for Ramseur and Franklinville. As of 2006, the HU had no streams on DWQ's list of impaired waters; however, the reservoir shows indications of high nutrient levels, likely related to the large number of animal operations in the HU. The HU is a Water Supply Watershed and a long portion of Sandy Creek is recognized by the State's Natural Heritage Program as a Significant Natural Heritage Area. DMS has been active in the HU with five projects that include components of preserving wetlands (3 acres) and streams (5,100 linear feet) and restoring wetlands (15 acres) and streams (15,000 linear feet). Piedmont Land Conservancy has also been active in protecting streamside buffers in the HU. Continued implementation of practices to reduce nutrient inputs to Sandy Creek Reservoir is recommended for this HU."

1.2 Background Summary

The Project Site is situated in northeastern Randolph County, approximately four miles west of Liberty and six miles north of Ramseur (Figure 1). It is bordered to the north and west by undeveloped land, to the east by SR 2442 (Ramseur-Julian Road), and to the south by Sandy Creek. Northeastern Randolph Middle School is on the property opposite of Sandy Creek, to the south. The Project Site can be accessed by using the following directions from US Highway 64.

- Turn north on US 421 in Siler City, towards the Town of Liberty.
- Proceed approximately 9.5 miles and turn south (left) onto NC 49.
- Proceed approximately 0.7 miles along NC 49 and turn north (right) onto SR 2459 (Sandy Creek Church Road).
- Follow Sandy Creek Church Road approximately 4.5 miles until it intersects with Ramseur-Julian Road and turn north (right),
- Follow Ramseur-Julian Road approximately 0.3 miles, crossing over Sandy Creek. The Charles Williams Site is on the west (left) side of the roadway, immediately north of Sandy Creek.

Situated in the Piedmont physiographic province and the Cape Fear River Basin, the Project Site encompasses 18 acres of former pasture and existing riparian forest. Elevations across the Site range between approximately 550 and 560 feet above Mean Sea Level. The following chart depicts pre-implementation existing condition information regarding the Site.

		,	
Physiographic Province	Piedmont	County	Randolph
River Basin Name	Cape Fear	Property Owner Name	Charles Williams
USGS 8-digit HUC	03030003		
USGS 14-digit HUC	03030002020010	Stream #1 Name	UT to Sandy Creek
NCDWQ Subbasin	03-06-09	Drainage Area	4.9 sq. mi.
Underlying Mapped Soil(s)	Chewacla loam	NCDWQ Score	(Perennial)
Drainage Class	Somewhat poorly drained	Rosgen Classification	Č5
Hydric Status	В	-	
Slope	0-2 %		
Available Water Capacity	Moderate to High		
FEMA Classification	Zone AE		
Invasive Vegetation Observed	Multiflora rose (Rosa multif	lora)	
-	Chinese privet (Ligustrum	sinense)	

Pre-Implementation Existing Conditions Summary

1.3 Vegetation Condition and Comparison to Success Criteria

Vegetation success criteria are consistent with the US Army Corps of Engineers (USACE) Wilmington Regulatory District's guidance for stream and wetland mitigation and the NCDENR's guidance for riparian buffer credit. The USACE guidance requires the survival of a minimum of 320 planted woody stems/acre after Monitoring Year 3 (MY3). A mortality rate of 10% is allowed after MY4 assessments (288 stems/acre) and, correspondingly, after MY5 assessments (260 stems/acre). The NCDENR guidance requires survival of at least 320 native, planted, hardwood stems/acre (trees only) at the end of the MY 5 to successfully earn riparian buffer credit.

Vegetation is currently being assessed using plot layouts consistent with the Carolina Vegetation Survey (CVS) Level II Vegetation Protocol. Stem count data is obtained from 12 permanently placed 10-meter² vegetation plots (Figures 3a and 3b). Assessments include counts of both planted and natural stems. Due to low stem counts during MY2, supplemental planting of species in the original planting list at approximately 300 stems per acre was performed between December 2014 and March 2015. Based on the current monitoring effort, 7 of 8 vegetation plots met the minimum success criteria established for MY4 stream/wetland mitigation criteria and 9 of 12 plots met the criteria for riparian buffer credit. Appendices B and C depict more detailed information regarding the vegetation condition, including annual photograph comparisons.

Due to the random placement of vegetation plots, only one of the eight plots associated with stream/wetland credit is currently placed within the wetland enhancement area (Vegetation Plot #6). The remaining seven plots are situated in areas not proposed as wetland enhancement.

1.4 Stream Stability/Condition and Comparison to Success Criteria

Enhancement (Level I) of the UT utilized natural channel design methodologies consistent with Priority Level IV stream restoration protocols. These protocols specifically include the stabilization of the existing channel in place. To document successful stabilization, a minimum of two bankfull events must be documented within the standard five-year monitoring period. In order for the hydrology-based monitoring to be considered complete, the two events must occur in separate monitoring years.

Evidence of a recent overbank event was documented on February 18, 2016. The overbank event was caused by the removal of the large beaver dam immediately upstream of the project boundary along the unnamed tributary to Sandy Creek. Evidence of this overbank event consisted of wrack material and sediment staining above the bankfull indicators along the channel, alluvial deposits outside the channel, and flattened vegetation far into the floodplain. The crest gauge was not used as an indicator of bankfull events during MY4 due to the overwhelming visual evidence of these events and the fact that the gauge was unable to be accurately read, possibly due to the deterioration of cork dust or its removal by ants. New cork dust will be added to the crest gauge for documentation of bankfull events during MY5 monitoring. Annual photograph comparisons of the stream channel are depicted in Appendix B and hydrologic data associated with this year's monitoring assessment are provided in Appendix E.

1.5 Wetland Condition and Performance Relative to Success Criteria

Wetland enhancement work was performed throughout the existing wetland areas. Prior to enhancement, these wetlands were severely degraded as a result of continuous soil compaction and grazing from livestock. The enhancement work included livestock removal via exclusion fencing and supplemental plantings. Benefits of the enhancement include water quality improvement by trapping nutrients such as nitrogen and phosphorous, toxic substances, and disease-causing microorganisms. Wetlands also slow and intercept surface runoff, protect stream banks from erosion, protect upland areas from flooding, and provide valuable habitat for wildlife.

1.6 Other Information

Summary information/data related to the occurrence of items such as beaver dams or encroachment, and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on the DMS website. All raw data supporting the tables and figures in the appendices is available from DMS upon request.

Boundary marking along the conservation easement using signage consistent with DMS guidelines was performed by Ecological Engineering on December 8, 2014, and is considered completed.

During MY2 monitoring, a recently constructed beaver dam was observed within the channel at approximately station 14+34.75. In May of 2015 during MY3 monitoring, another recently constructed beaver dam was observed immediately upstream of the culverted road crossing at approximately station 19+51.50. During June of 2015, these dams were removed by hand and beaver trapping was

conducted by APHIS. As of July 20, 2016, no additional beaver activity was observed within the easement area. During a subsequent site visit on October 4, 2016, the beaver dam upstream of the road crossing was observed to have been reconstructed.

During late MY3 or early MY4, the large beaver impoundment at the upstream end of the project area was breached. It is not clear whether the breach was intentional, or whether the dam naturally breached as a result of a storm event. In February 2016, evidence of very high water and strong overbank flow was observed, likely from this breach, but a full assessment of the channel was not possible at the time due to high water and turbidity. Banks were observed to be generally stable and vegetated, and no structure instability or failure was observed. Please refer to Appendix B for representative photographs.

Prior to MY3, stream stability monitoring longitudinal profile survey data representing the state of the UT from the upstream, northern easement boundary downstream to the southern easement boundary was collected at widely spaced intervals, providing a low resolution depiction of channel morphology. Survey data from MY3 on was collected at a higher resolution, allowing a more detailed comparison of the stream bed over time. Please refer to Appendix D for a comparison of MY4 longitudinal profile data with previous monitoring data. Although the more detailed longitudinal profile added survey points to the profile, key grade control locations (heads of runs, riffles, and structures) have maintained their elevations over the course of monitoring. A comparison of high resolution MY3 and MY4 data shows possible sediment accumulation near the downstream end of the UT, likely caused by the large water release from the upstream beaver impoundment. Subsequent survey data in future monitoring years will be collected to the level of detail represented in MY3 and MY4 data, which will allow an ongoing comparison of stream bed stability. An additional Appendix F is provided to depict the detailed longitudinal profile of the channel thalweg. For ease of comparison, this appendix consists of four sheets, each showing a reach of the channel thalweg at a larger scale than the chart in Appendix D.

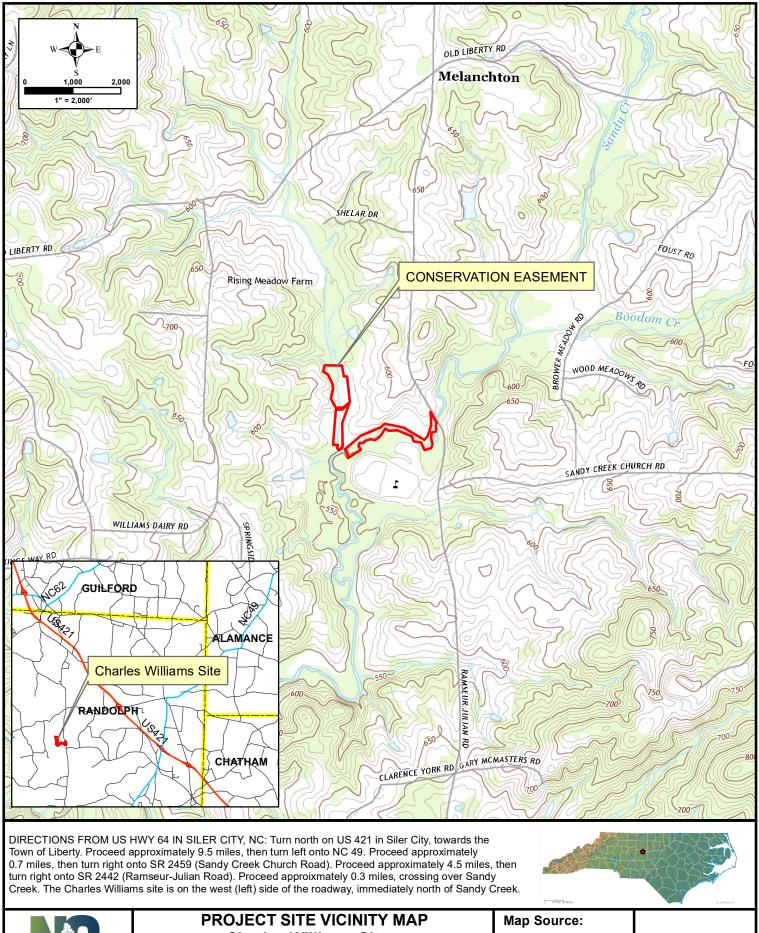
2.0 METHODOLOGY

This monitoring report follows methodology consistent with DMS's Procedural Guidance and Content Requirements for Monitoring Reports (Version 1.4, dated 11/07/11), available at the DMS website (http://portal.ncdenr.org/web/eep).

All surveys were performed via total station and survey grade Global Positioning System (GPS). Each survey point has three-dimensional coordinates and is tied to survey control points. Longitudinal profile stationing was originally developed based on the design stationing, and follows the UT from the northern to the southern property boundary (upstream to downstream) as depicted on the survey plat. Based on comments from DMS during the review of the draft MY2 monitoring report, the MY3 longitudinal profile survey incorporated more detailed data collection to more accurately represent changes in channel morphology over time. The same level of detail was collected during MY4 channel surveys. As the MY3 survey is a more complete longitudinal profile, channel stationing is more accurate than that shown in previous longitudinal profiles. In order to compensate for differences in stationing, channel survey shots from previous monitoring years were viewed in plan view and compared to MY3 channel stationing. Similarly, stationing of MY4 data points was also adjusted based on the MY3 channel stationing. Appendix D includes an overlay of channel survey data based on this adjusted stationing. Subsequent surveys will continue to collect the level of detail represented in the MY3 and MY4 surveys.

Particle size distribution protocols followed the Wolman Pebble Count Procedure, which requires an observer with a metric ruler to measure particles based on their intermediate axis. This information is correlated into a graph depicting a particle size analysis of each cross section.

Vegetation assessments were conducted using the CVS protocol (Version 4.2). As part of this protocol, vegetation is assessed using 100-meter² plots, or modules. The scientific method requires that measurements be as unbiased as possible, and that they be repeatable. Plots are designed to achieve both of these objectives; in particular, different people should be able to inventory the same plot and produce similar data (Lee et. al., 2006). According to Lee et. al. (2006), there are many different goals in recording vegetation, and both time and resources for collecting plot data are extremely variable. To provide appropriate flexibility in project design, the CVS protocol supports five distinct types of vegetation plot records, which are referred to as levels in recognition of the increasing level of detail and complexity across the sequence. The lower levels require less detail and fewer types of information about both vegetation and environment, and thus are generally sampled with less time and effort (Lee et. al., 2006). Level 1 (Planted Stem Inventory Plots) and Level 2 (Total Woody Stem Inventory Plots) inventories were completed on all 12 of the vegetation plots at the Project Site.


A crest gauge was installed near the downstream end of the Site along the UT to verify the on-site occurrences of bankfull events. In addition to the crest gauge, observations of recently deposited overbank wrack and/or sediment serve to validate gauge observations, as necessary. Documentation of the highest stage during the monitoring interval is assessed during each site visit and the gauge is reset. The data related to bankfull verification are summarized in each year's report. Based on the elevation of the crest gauge, any readings observed higher than 22 inches on the gauge reflect a bankfull or above bankfull event.

3.0 REFERENCES

- Lee, Michael T., R.K. Peet, S.D. Roberts and T.R. Wentworth, 2006. CVS Protocol for Recording Vegetation, Version 4.0 (<u>http://cvs.bio.unc.edu/methods.htm</u>).
- NCDENR Division of Water Quality (NCDWQ), 2005. Cape Fear River Basinwide Management Plan. Available at: <u>http://portal.ncdenr.org/web/wq/ps/bpu/basin/capefear</u>.
- NCDENR Ecosystem Enhancement Program, 2013. Charles Williams Stream, Wetland, and Buffer Site Baseline Monitoring Document and As-built Baseline Report. Prepared by Ecological Engineering, LLP.
- NCDEQ Division of Mitigation Services, 2015. Charles Williams Stream, Wetland, and Buffer Site Moniroting Year 3 Final Report. Prepared by Ecological Engineering, LLP.
- NC State Climate Office, 2016. Daily Precipitation Data from Siler City Airport (SILR), Chatham County (<u>www.nc-climate.ncsu.edu</u>).
- US Army Corps of Engineers, US Environmental Protection Agency, NC Wildlife Resources Commission and NC Department of Environment Division of Water Quality, 2003. Stream Mitigation Guidelines.

APPENDIX A

Project Vicinity Map and Background Tables

Environmental Quality

Charles Williams Site -DMS Project No. 80

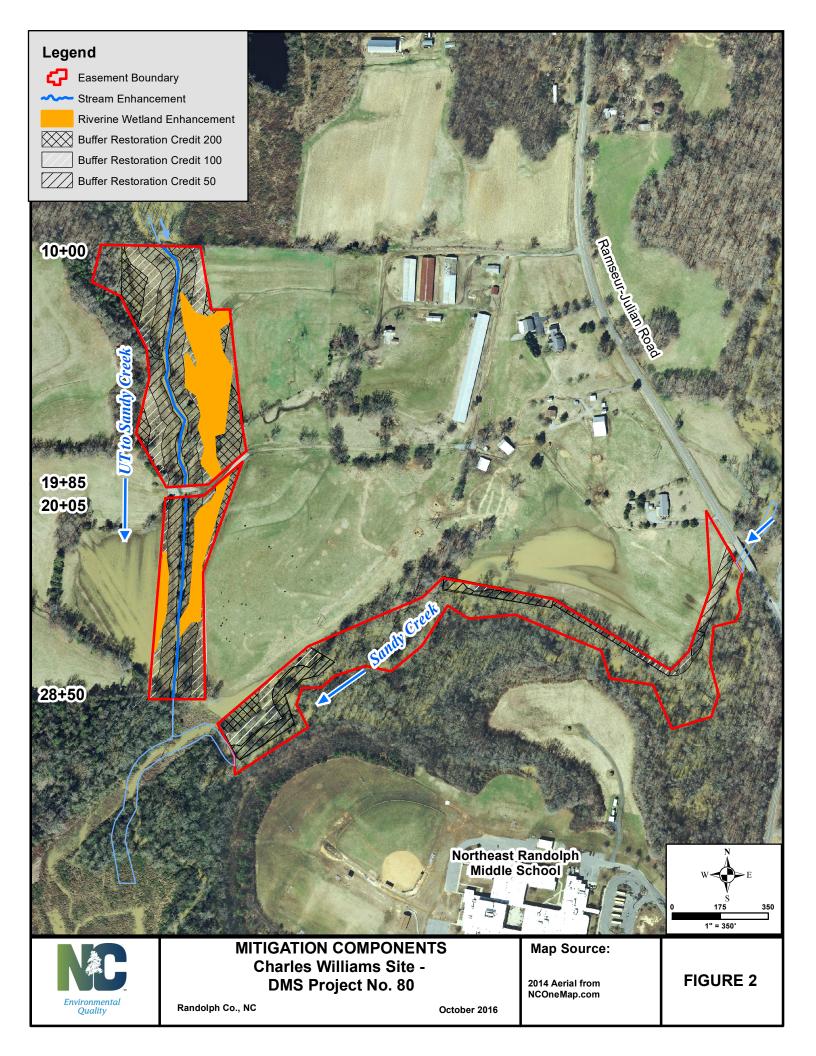
2013 Grays Chapel and Liberty USGS Quadrangles **FIGURE 1**

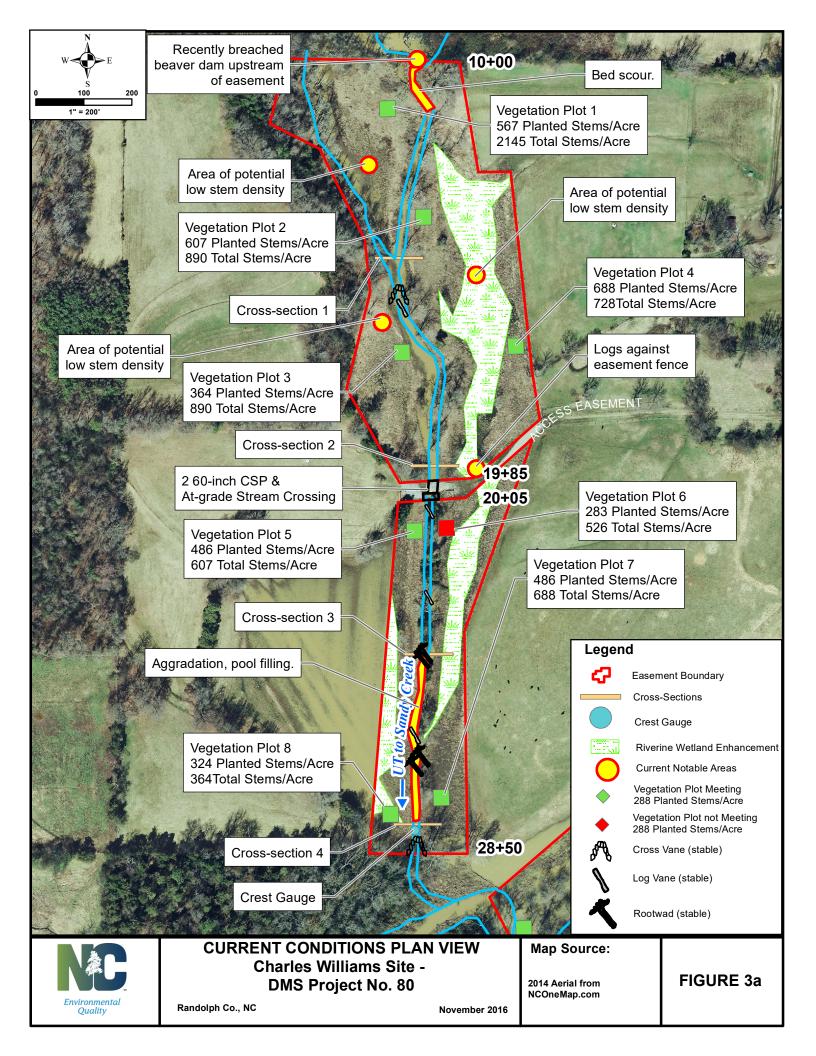
Randolph Co., NC

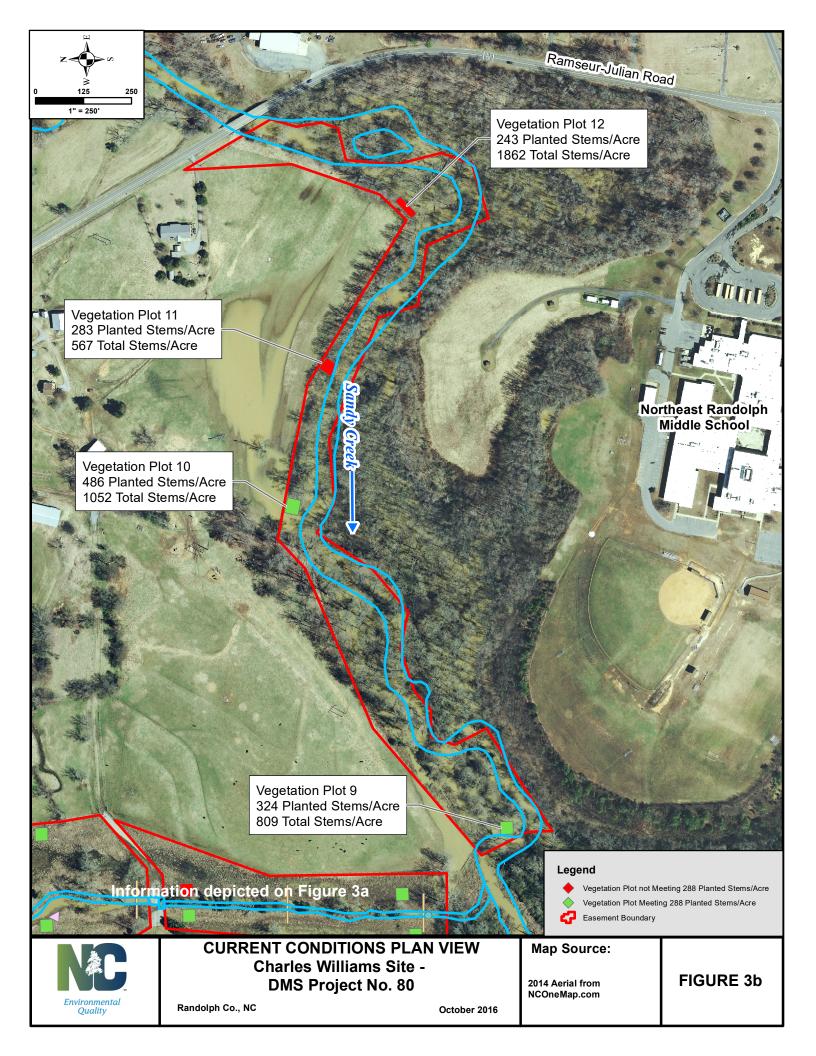
October 2016

		Tab		-	mponents Stream, Wetla		ation Credit	S	
					Mitigation Cre				
		Stream	Riparian	Wetland	Non-ripar	ian wetland	Buffer	Nitrogen Nutrient Offset	Phosphorus Nutrient Offset
Туре	R	RE	R	RE	R	RE			
Totals		1,233		1.1			336,430		
					Project Compor	ients			
Project Component	t	Stationin	ng/Location		ng Footage/ creage	Approach	Restoration or Restoration Equivalent	Restoration Footage or Acreage	Mitigation Ratio
Stream Enhancemer	ıt	10+00	to 27+53	1,850) linear feet	EI	RE	1,233	1.5 : 1
Riparian Wetland Enhancement			and west of U ndy Creek	T 2.	2 acres	Е	RE	1.1	2 : 1
Buffer Restoration (TOB - 50')		Sanc	eek and UT to ly Creek	201,48	1 square feet	R	R	201,481	1:1
Buffer Restoration (50 - 200'))'		eek and UT to ly Creek	182,90	7 square feet	R	R	182,907	1:1
				C	omponent Sumi	mation			
Restoration Leve	I	Stream (linear feet)	Riparian V	Wetland (acres)		oarian Wetland (acres)	Buffer (square feet)	Upland (acres)
				Riverine	Non-riverine				
Restoration								384,208	
Enhancement				2.2					
Enhancement I		1,	850						
Enhancement II									
Creation									
Preservation HQ Preservation									
					BMP Elemen	ts			
Element		Loc	ation	Purpo	se/Function		N	lotes	
BMP Elements							· DDP = Drv Detenti		

BR = Bioretention Cell; SF = Sand Filter; SW = Stormwater Wetland; WDP = Wet Detention Pond; DDP = Dry Detention Pond; FS = Filter Strip; S = Grassed Swale; LS = Level Spreader; NI = Natural Infiltration Area; FB = Forested Buffer.


-	vity and Reporting History m Wetland and Buffer Site / 80	1											
Elapsed Time Since Grading (Complete (Feb 2013): 2 years, 9 months												
Elapsed Time Since Planting	Complete (Feb 2014): 1 year, 9 months												
Number of Reporting Years: 3 Activity or Report Data Collection Complete Completion or Delivery Mitigation Plan September-08 May-09 Final Design - Construction Plans November-09 April-12													
Mitigation Plan	September-08	May-09											
Final Design - Construction Plans	November-09	April-12											
Construction		February-13											
Femporary S&E Mix Applied to Entire Project Area		January-13											
Permanent Seed Mix Applied to Entire Project Area		January-13											
ive Stake Plantings Applied		January-13											
Baseline Monitoring Document	June-13	July-13											
Bare-rooted Planting Applied		February-14											
/ear 1 Monitoring	March-14	May-14											
/ear 2 Monitoring	September-14	November-14											
/ear 3 Monitoring	June-15	November-15											
/ear 4 Monitoring	July-16	November-16											
/ear 5 Monitoring													
/ear 6 Monitoring (vegetation only)													


Table 3. Project Charles Williams Stream W	
Designer	Firm Information/ Address
Ecological Engineering, LLP	1151 SE Cary Parkway, Suite 101, Cary, NC 27518
Jenny S. Fleming, PE	(919) 557-0929
Construction Contractor	Firm Information/ Address
Riverworks, Inc.	8000 Regency Parkway, Suite 800, Cary, NC 27518
Bill Wright	(919) 459-9001
Hauling Contractor	Firm Information/ Address
Strader Fencing, Inc.	5434 Amick Road, Julian, NC 27283
	(336) 697-7005
Planting Contractor(s)	Firm Information/ Address
Carolina Silvics, Inc. (bare-rooted & containerized)	908 Indian Trail Road, Edenton, NC 27932
Mary-Margaret S. McKinney, RF, PWS	(252) 482.8491
Riverworks, Inc. (livestakes only)	8000 Regency Parkway, Suite 800, Cary, NC 27518
George Morris	(919) 459-9001
Seeding Contractor	Firm Information/ Address
Strader Fencing, Inc.	5434 Amick Road, Julian, NC 27283
Kenneth L. Strader	(336) 697-7005
Seed Mix Sources	Green Resource, LLC (336) 855-6363
Nursery Stock Suppliers (live stakes only)	Native Roots Nursery (910) 385-8385
	NC Forest Service Tree Nursery (919) 731-7988
	Foggy Mountain Nursery (336) 384-5323
	Mellow Marsh Farm (919) 742-1200
Monitoring Performer	Firm Information/ Address
Ecological Engineering, LLP	1151 SE Cary Parkway, Suite 101, Cary, NC 27518
David Cooper, Heather Smith, Lane Sauls (stream, vegetation & wetland)	(919) 557-0929


-												
Table 4. Project Baseline Information and Attributes Charles Williams Stream Wetland and Buffer Site / 80 Project Information Project Name Charles Williams Stream Wetland and Buffer Sile County Randoiph Project Name Charles Williams Stream Wetland and Buffer Sile County Randoiph Project Name Charles Williams Stream Wetland and Buffer Sile County Randoiph Project Coordinates (latitude and longitude) 35'49'31 95' North' 79'39'20 44' West Project Coordinates (latitude and longitude) 35'49'31 95' North' 79'39'20 44' West Project Watershed Summary Information Randoi Cape Fear USGS Hydrologic Unit 4-digit 00300003020010 DWQ Subbasin Cape Fear USGS Hydrologic Unit 4-digit 0030000300000000010 WWQ Subbasin Cape Fear USGS Hydrologic Unit 4-digit 00300003020010 OWQ Subbasin Colspan="2"												
Project Name	Charles Williams Stream Wetland and Buffer Site											
-	Randolph											
-												
Charles Williams Stream Wetland and Buffer Site / 80 Project Information Project Name Charles Williams Stream Wetland and I County Randoph Project Area 18 acres Project Coordinates (latitude and longitude) 35*4931.95* North / 79*3902.64* Project Coordinates (latitude and longitude) 35*4931.95* North / 79*3902.64* Project Basin Cape Fear USGS Hydrologic Unit 4-digit 030 UWQ Subbasin 0306.09 Project Drainage Area 4.9 sq. mi. Project Drainage Area 9 sq. mi. OVQ Subbasin 0306.09 Project Drainage Area 9 sq. mi. Project Drainage Area 4.9 sq. mi. Valley Classification Valley Type VIII Drainage Area 4.9 sq. mi. NCDWQ Stream ID Score >50 COVQ Water Quality Classification WSHII Morphological Description (stream type) C.5 Evolutionary Trend C-6-F-2-C Underlying Mapped Solis Chewada loam Drainage Classification Poorly drained <td></td>												
Physiographic Province	Piedmont											
, , , , , , , , , , , , , , , , , , , ,												
CGIA Land Use Classification	Agricultural Land											
Reach S	ummary Information											
Charles Williams Stream Wetland and Buffer Site / 80 Project Information Project Name Charles Williams Stream Wetland and Buffer Site County Randoph Project Area 18 acres Project Area 18 acres Project Coordinates (latitude and longitude) 35*4231.95* North/ 79*3902.64* West Project Coordinates (latitude and longitude) 35*4231.95* North/ 79*3902.64* West Project Drainage Area Cage Fear USGS Hydrologic Unit 8-digit 030300320010 DWG Subbasin 05-06-09 Project Drainage Area Percentage of Impervious Area 5-16 0% CGIA Land Use Classification Reach Summary Information Longth of Reach 1.350 linear feat Valley Classification Valley Tise VIII Drainage Area 4.9 sq. ml. NCDWQ Water Quality Classification Wetland NCDWQ Water Quality Classification WS 411 Morphologia Enciption of Exotic Invasive Species Leas tha 5% Drainage Classification Zore AE Norphologia Enciption of Exotic Invasive Species Leas tha 5% Vetland Summary Information<												
Valley Classification	Valley Type VIII											
Project Watershed Summary Information Physiographic Province Piedmont River Basin Cape Fear USGS Hydrologic Unit 8-digit 03030003 USGS Hydrologic Unit 8-digit 03030003 DWQ Subbasin 03-06-09 Project Drainage Area 4.9 sq. mi. Project Drainage Area 5 to 6% CGIA Land Use Classification Agricultural Land Reach Summary Information Length of Reach 1.850 linear feet Valley Classification Valley Type VIII Drainage Area 4.9 sq. mi. NCDWQ Stream ID Score >50 NCDWQ Water Quality Classification WS-111 Morphological Description (stream type) C5 Evolutionary Trend C-G-F-E-C Underlying Mapped Soils Chewacla loam Drainage Classification Pooty drained Soil Hydric Status Hydric B Slope 0 to 2% FEMA Classification Zone AE Native Vegetation Community Piedmont Alluvial Forest Percent Composition of Exotic Invasive Species												
NCDWQ Stream ID Score	>50											
NCDWQ Water Quality Classification	WS-III											
Morphological Description (stream type)	C5											
	C-G-F-E-C											
-	Chewacla loam											
-												
-												
•												
_												
-	-											
	Overbank flooding											
Hydrologic Impairment	None											
Charles Williams Stream Wetland and Buffer Site / 80 Project Information Project Name Charles Williams Stream Wetland and Buffer Si County Randoph Project Area 18 acros Project Area 18 acros Project Coordinates (latitude and longitude) 35*49'31 50" North 79"39'02 64" West Wettershed Summary Information Physiographic Province Piedmont Biver Basin Capp Fear USGS Hydrologic Unit 8-digit 0300003 DWGS Subbasin 03:06:09 Project Drainage Area 4.9 sq. mi. Project Drainage Area 5.6 5% CGR Land Use Classification Natro Natro Natro Natro Langth of Reach 1.850 linear feet Valley Classification Valley Type VIII Drainage Area 4.9 sq. mi. NCDWQ Stream ID Score >50 NCDWQ Stream ID Score >50 NCDWQ Stream ID Score >50 Drainage Classification Cheve FE-C Underlying Mapped Soils Cheve AFE-C Underlying Mapped Soils Cheve AEE	Piedmont Alluvial Forest											
	Less than 5%											
Project Information Project Name Charles Williams Steam Wetland and Buffer Sile County Randolph Project Condinates (latitude and longitude) 35"49'31 56" North 79"39702.64" Wetl Project Condinates (latitude and longitude) 35"49'31 56" North 79"39702.64" Wetl Project Condinates (latitude and longitude) 35"49'31 56" North 79"39702.64" Wetl VISGS Hydrologic Unit 8-digit 03000030000 USGS Hydrologic Unit 8-digit 03000030000 USGS Hydrologic Unit 8-digit 0300003000010 DWS Subbasin Cape Fear Project Drainage Area 4.9 sq. mi. Project Drainage Area 5 is 5% CGRA Land Use Classification Reach Summary Information Langth of Reach 1.850 linear feet Valley Classification Valley Type VIII Drainage Area 4.9 sq. mi. Valley Classification Valley Type VIII Drainage Area A.9 sq. mi. Valley Classification Valley Type VIII Drainage Classification Valley Type VIII Drainage Classification Co-4-E-C- Underlying Mapped Solis C												
Waters of the United States - Section 404	Resolved											
Charles Williams Stream Wetland and Buffer Site / 80 Project Name Charles Williams Stream Wetland and Buffer Site County Randaph Project Area 18 acress Project Area 18 acress Project Area 18 acress Project Coordinates (latitude and longitude) 35 '49'31 50'' North 79'39'02.64'' West Project Coordinates (latitude and longitude) 35 '49'31 50'' North 79'39'02.64'' West Project Drainage Area Cape Fear USGS Hydrologic Unit 84 digit 030300003 USGS Hydrologic Unit 14-digit 030300020010 DVQ Subbasin Cape Fear 030300020010 030300020010 DVQ Subbasin Cape Fear 030300020010 030300020010 DVQ Subbasin Reach Summary Information 4.9 sq. mi. 10030002002010 DVQ Subbasin Reach Summary Information Valley Type VIII 100 Droinage Area 4.9 sq. mi. NCDWQ Subbasin Valley Type VIII 100 Droinage Cassification Valley Type VIII 100 100 100 100 100 100 100 100 1												
Charles Williams Stream Wetland and Buffer Site / 80 Project Name Charles Williams Stream Wetland and Buffer Site County Randoph Project Area Bacres Project Area Bacres Project Area Bacres Project Coordinates (latitude and longitude) 35'4'3'1.95'' North' 79''3902.64'' West Project Coordinates (latitude and longitude) 35'4'3'1.95'' North' 79''3902.64'' West Wore Basin Capo Feer USGS Hydrologic Unit 8-digit 03030003 USGS Hydrologic Unit 8-digit 03030003 DWG Subbasin Capo Feer Project Drainage Area A 9'' ag mi. Project Classification Valley Reach Summary Information Agio 9''' Largth of Reach 1.850 innear fret Valley Classification Wetland NCDWQ Water Caulity Classification Wetland NCDWQ Water Caulity Classification Wetland NCDWQ Water Caulity Classification Charweda leam Drainage Area A 9''''''''''''''''''''''''''''''''''''												

APPENDIX B

Visual Assessment Data

		Table 5. Visual Stream Morphology Assessment Assessed Length: 1,850 linear feet Charles Williams Stream, Wetland, and Buffer Site / 80	n Morpho Igth: 1,850 li n, Wetland, a	logy Asse near feet nd Buffer Si	ssment te / 80					
Major Channel Category	Channel Sub- Category	Metric	Number Stable, Performing as Intended	Total Number in As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
	Vertical Stability	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars).			~~ (285	84.6			
	Riffle Condition	Degradation - Evidence of down-cutting. Texture/Substrate - Riffle maintains coarser substrate.			0 7	06 0	1.09 100			
Bed	Meander Pool	Depth - Sufficient (Max. Pool Depth : Mean Bankfull Depth ratio <u>></u> 1.6).	4	5			80			
	Condition	Length - Appropriate (>30% of centerline distance between tail of upstream riffle and head of downstream riffle).	4	5			80			
	Thelwar Docition	Thalweg centering at upstream of meander bend (run).	8	8			100			
		Thalweg centering at downstream of meander bend (glide).	7	8			88			
	Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion.			0	0	100	none	none	n/a
Bank	Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100	none	none	n/a
	Mass Wasting	Bank slumping, calving, or collapse.			0	0	100	none	none	n/a
				Totals	0	0	93	n/a	n/a	n/a
	Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100			
	Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	3	3			100			
Engineered Structures	Piping	Structures lacking any substantial flow underneath sills or arms.	8	80			100			
	Bank Protection	Bank erosion within the structures' extent of influence does NOT exceed 15%.	8	8			100			
	Habitat	Pool forming structures maintaining - Max. Pool Depth : Mean Bankfull Depth ratio <u>></u> 1.6. Rootwads/logs providing some cover at base-flow.	3	я			100			

	Table 6. Vegetation Co	ondition A	Assessme	ent		
	Charles Williams Stream, W	etland, and	Buffer Site	/ 80		
Planted Acreage:	16 acres					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	n/a	n/a	n/a	n/a
Low Stem Density Areas	Woody stem densities clearly below target levels based on MY 3, 4, or 5 stem count criteria.	0.1 acres	See CCPV	2	<0.2 ac.	1%
Charles Williams Str Planted Acreage: 16 acres Vegetation Category Definitions Bare Areas Very limited cover of both woody and herbaceous material. Low Stem Density Areas Woody stem densities clearly below targ levels based on MY 3, 4, or 5 stem court criteria. Areas of Poor Growth Rates or Vigor Areas with woody stems of a size class obviously small given the monitoring yet Estimated Acreage: 18 acres Vegetation Category Definitions Invasive Areas of Concern Areas or points (if too small to render as polygons at map scale).			Total	2	<0.2 ac.	1%
Growth Rates or	Areas with woody stems of a size class that is obviously small given the monitoring year.	0.25 acres	n/a	n/a	n/a	n/a
		Cum	ulative Total	2	<0.2 ac.	1%
Estimated Acreage:	18 acres					
Vegetation		Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
	Areas or points (if too small to render as polygons at map scale).	1,000 SF	Not depicted – invasives are found singly throughout easement after treatment	0	<.1 acres	<1 %
	Areas or points (if too small to render as	1,000 SF	See CCPV	1	0.3 acres	1%


Charles Williams Stream, Wetland, and Buffer Site / 80 - Annual Photograph Comparison

Cross Section 1 Facing Downstream

Cross Section 2 Facing West

Cross Section 3 Facing West

Cross Section 3 Facing Downstream

Cross Section 4 Facing West

Cross Section 4 Facing Downstream al suc

MY4 (July 2016)

1. Wrack at High Elevation, Documented 18 Feb. 2016

2. Overbank Wrack and Scour, Documented 18 Feb. 2016

3. Flattened Vegetation Outside Channel, Documented 18 Feb. 2016

4. Log Jam Documented 20 July 2016

1. Breached Beaver Dam, 30 June 2015

2. Site of Previous Beaverdam, Not Reconstructed as of 19 July 2016

3. Beaver Dam Reconstructed as of 4 Oct. 2016

4. Breached Beaver Impoundment Upstream of Project,18 Feb. 2016

5. Breached Beaver Impoundment Upstream of Project, 2 June 2016

APPENDIX C

Vegetation Plot Data

Planted Vegetation Summary

During MY3 monitoring, new stems were documented from a supplemental planting performed by Carolina Silvics in early 2015. Stem density was observed to be adequate in 12 of the 12 vegetation plots. Please refer to the letter and tables below.

Proposed Supplemental Planting Letter

October 6, 2014

Mr. Jeff Schaffer NC Ecosystem Enhancement Program 217 West Jones Street, Suite 3000A Raleigh, North Carolina 27603

Re: D13002S

Site: Sandy Creek (Charlie Williams), EEP# 80 Randolph County, NC

Dear Mr. Schaffer:

This letter serves as our Site Maintenance Report the above referenced project site and proposes replanting activities at the site.

Messrs. William Skinner and Perry Sugg of Carolina Silvics, Inc. last visited the project site on September 9, 2014. Herbicide applications were performed at this time to control privet (*Ligustrum* spp.) and air yam (*Dioscorea bulbifera*). While on-site they observed many areas of the site where herbaceous vegetation was extremely thick and possibly outcompeting the planted stems. They also observed many dead stems and that the tops of many planted stems appeared to have died-back but were resprouting.

The Fall monitoring data and baseline monitoring data that you have provided shows approximately 65% survival at this site and correlates with what we observed on-site.

Carolina Silvics, Inc. proposes to replant the site between December 15, 2014 and March 15, 2015 with approximately 3,450 stems (an average of 300 stems per acre) from the original planting list for the site. These stems will distributed throughout the site as needed based upon the Fall monitoring report and observed conditions on site. Seedling orders are being finalized now and will be forwarded to you for approval within the next week.

Since survival percentage of stems is less than we would like, we feel that both soil amelioration and competition control measures are needed at this site. Within portions of the site where competition seems particularly heavy, we will manually cut paths several feet wide low to the ground in the existing herbaceous competition and apply Oust® XP (sulfometuron methyl) herbicide to the paths. Herbicide will not be applied to areas of standing water or areas along the channel. Stems

Office: 252-482-8491 Fax: 252-482-8491 Web: www.carolinasilvics.com

will then be replanted into these paths. Conversely, in areas where general vegetative growth is sparse, we will apply a slow release fertilizer at time of planting to improve general soil fertility in those areas.

We will notify you in advance of our replanting and maintenance activities on this site. We request that a member of your staff be onsite with us as we begin these actives so that proper distribution of the seedlings can be agreed-upon in the field by all parties.

Please know that Carolina Silvics, Inc. is committed to the success of this project and will take the measures necessary to ensure that we remain in contract compliance. If you have any questions regarding this report or our proposed replanting and maintenance activities, please contact me at (252) 482-8491 or mary-margaret@carolinasilvics.com.

Respectfully,

CAROLINA SILVICS, INC.

Monground S.M. Kinney Mary-Margaret McKinney, RF

President

Office: 252-482-8491 Fax: 252-482-8491 Web: www.carolinasilvics.com

Original Planting List from DMS

Species	Type	Ripa	arian	Wet	land	Nuncery
Species	Туре	Qty	%	Qty	%	Nursery
Betula nigra	2-0 BR	300	10%	100	11%	NCFS
Carya glabra	2-0 BR	100	3%			NCFS
Carya tomentosa	2-0 BR	200	7%			NCFS
Fraxinus pennsylvanica	2-0 BR	275	9%	100	11%	NCFS
Liriodendron tulipifera	2-0 BR	400	13%			NCFS
Platanus occidentalis			23%	NCFS		
Quercus falcata var. pagodiafolia	2-0 BR	300	10%	100	11%	NCFS
Quercus nigra	2-0 BR			100	11%	NCFS
Quercus phellos	2-0 BR	600	20%	200	23%	NCFS
Quercus rubra	2-0 BR	300	10%			NCFS
Amelanchier arborea	1-gal	25	1%			Native Roots
Carpinus caroliniana	1-gal	85	3%			Native Roots
Chionanthus virginicus	1-gal	64	2%			Native Roots
Diospyros virginiana	2-0 BR	200	7%			NCFS
llex verticillata	1-gal			37	4%	Native Roots
Magnolia virginiana	1-gal			38	4%	Native Roots
		3,074	100%	875	100%	

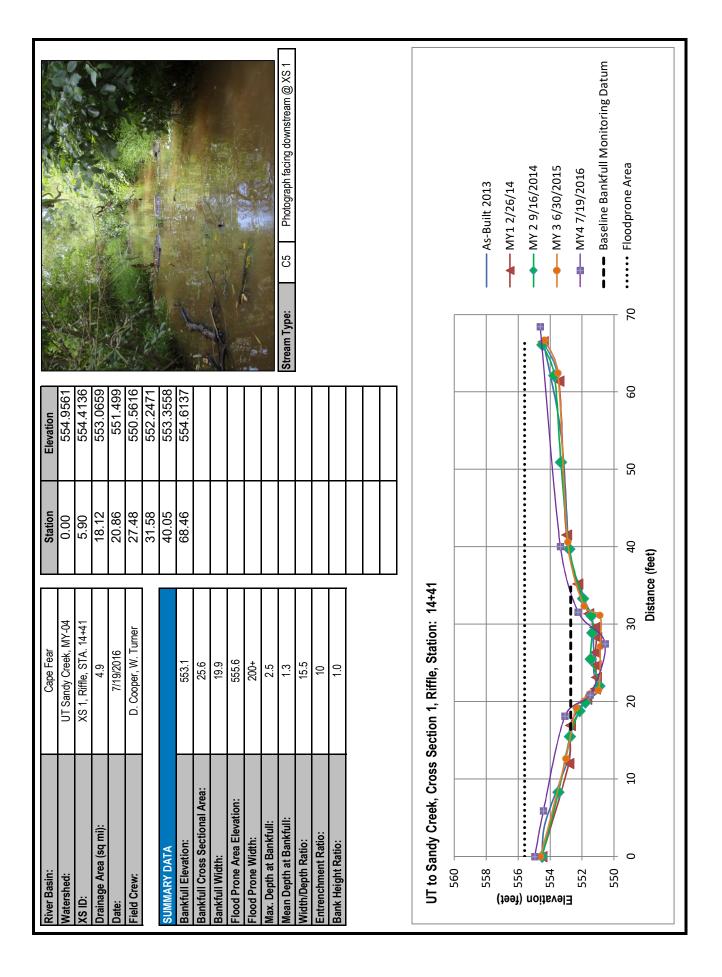
. . ali (Ohaula - Millia .

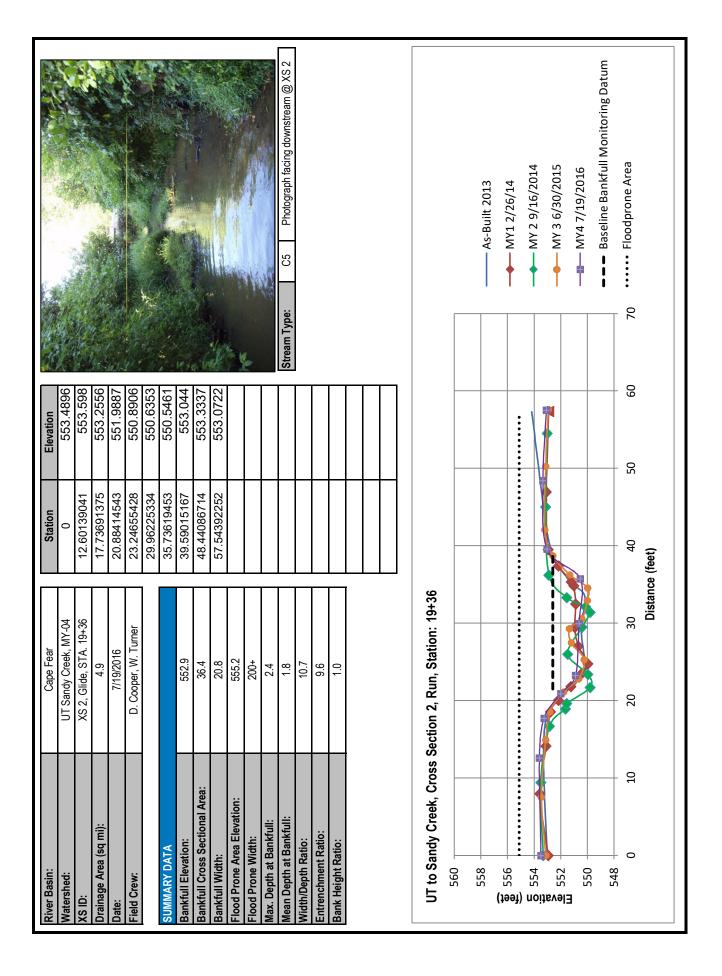
Т	able 7. Vegetation	Plot Criteria Att	ainment
C	harles Williams Stream	n, Wetland, and Buffe	er Site / 80
Vegetation Plot ID	Stream/Wetland Vegetation Survival Threshold Met?	Buffer Vegetation Survival Threshold Met?	Tract Mean
1	Yes	Yes	
2	Yes	Yes	
3	Yes	Yes	
4	Yes	Yes	
5	Yes	Yes	
6	No	No	Stream/Wetland Veg. = 87.5%
7	Yes	Yes	Buffer Veg. = 75%
8	Yes	Yes	
9	n/a	Yes	
10	n/a	Yes	
11	n/a	No	
12	n/a	No]

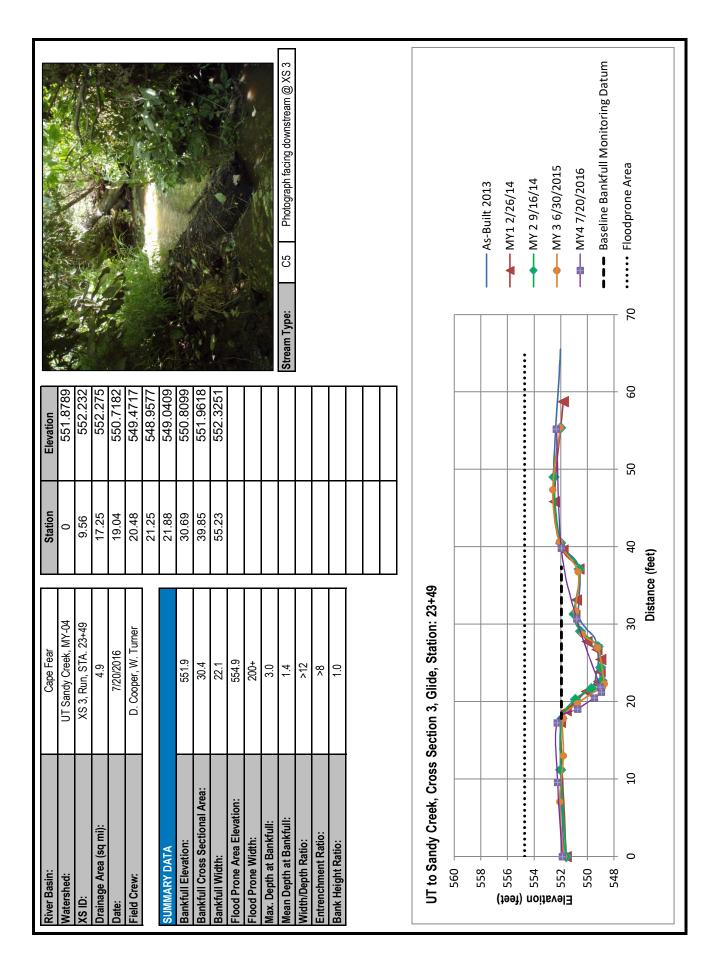
Notes: Supplemental planting at approximately 300 stems per acre was performed between December 2014 and March 2015.

	. CVS Vegetation Plot Metadata		
	liams Stream, Wetland, and Buffer Site / 80		
Report Prepared By	David Cooper		
Date Prepared	7/25/2016 15:18		
database name	SandyCreekCharlesWilliams_80_RandolphCounty_Year 4.mdb		
database location	P:\10000 Consultants\10227 Sungate\10227-017_Charles Williams Monitoring\CVS Database		
Monitoring(CVS Databasecomputer nameWKST6file size63737856DESCRIPTION OF WORKSHEETS IN THIS DOCUMENTMetadataDescription of database file, the report worksheets, and a summary of project(s) and project data.Proj, plantedEach project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.Proj, total stemsEach project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer 			
file size	63737856		
DESCRIPTION OF WORKSHEETS IN T	HIS DOCUMENT		
Metadata	•		
Proj, planted			
Proj, total stems	This includes live stakes, all planted stems, and all natural/volunteer		
Plots			
Proj, plantedEach project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.Proj, total stemsEach project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.PlotsList of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).Vigor Vigor by SppFrequency distribution of vigor classes for stems for all plots. Frequency distribution of vigor classes listed by species. List of most frequent damage classes with number of occurrences and			
Metadataproject(s) and project data.Proj, plantedEach project is listed with its PLANTED stems per acre, for each year This excludes live stakes.Proj, total stemsEach project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.PlotsList of plots surveyed with location and summary data (live stems, de stems, missing, etc.).Vigor Vigor by SppFrequency distribution of vigor classes for stems for all plots. Frequency distribution of vigor classes with number of occurrences and List of most frequent damage classes with number of occurrences and			
Damage	Frequency distribution of vigor classes for stems for all plots. Frequency distribution of vigor classes listed by species. List of most frequent damage classes with number of occurrences and		
Damage by Spp	Damage values tallied by type for each species.		
	Damage values tallied by type for each plot.		
Planted Stems by Plot and Spp	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.		
ALL Stems by Plot and spp	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.		
PROJECT SUMMARY			
Project Code	80		
project Name	Sandy Creek - Charles Williams		
Description	Stream, Wetland and Buffer		
River Basin	Cape Fear		
length(ft)	1,850		
stream-to-edge width (ft)	5 to 12		
area (sq m)	1,302		
Required Plots (calculated)	12		
Sampled Plots	12		

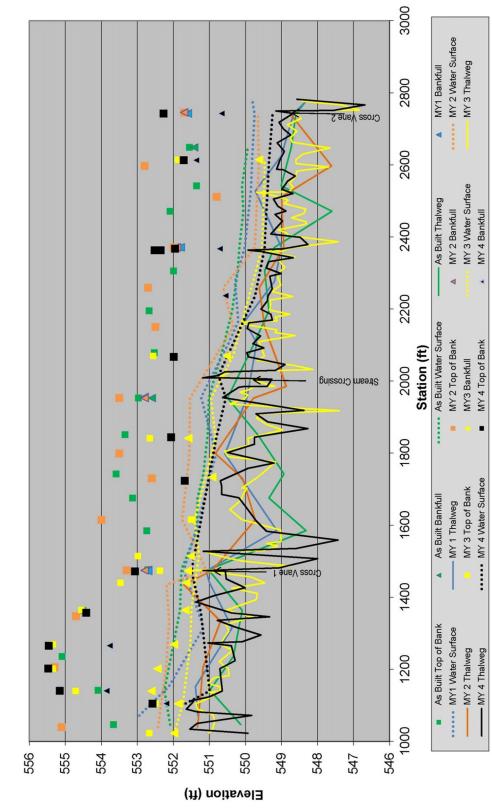
EP Project Code 80. Projec	t Name: Sandy Creek	 Charles Williar 														Current	Plot Da	ita (MY	3 2016)															Ann	ual Mean
Scientific Name	Common Name	Species Type	08	0-01-0001		01-0002	2	080-0	01-0003		080-01	L-0004	080-01	-0005	0	80-01-000	-		0-01-0007		080-01-0008	-		1-0009	-)80-01		0	80-01-00)11	80	30-01-00	012	M	Y3 (2016)
			PnoLS	P-all T	PnoLS P	-all T	Р	noLS P-	all T	Pno	LS P-a	ΠТ	PnoLS P-al	ΙT	PnoL	S P-all 1	•	PnoLS	P-all T	Ρ	PnoLS P-all T	P	noLS P-a	all T	PnoL	S P-al	ΙT	PnoL	S P-all	т	PnoLS	P-all	т	PnoLS	P-all T
cer negundo	ooxelder	Tree																		1					8			7		7			16		
cer rubrum r	red maple	Tree			4																														
etula nigra r	river birch	Tree			1		2	1	1	1			2	2	2			2	2	2	1 1	2												6	6
arpinus caroliniana	American hornbeam	Tree											T (1	1	1	1	1	1		1			5	2	2
arya I	nickory	Tree											2	2	2					1	1 1	1			1					(7	3	3
eltis laevigata	sugarberry	Tree																							2					(6		
ephalanthus occidentalis	common buttonbush	Shrub																		1										(
iospyros virginiana	common persimmon	Tree			1	1	1						1	1	3			1	1	1			2	2	2	1	1	1		(1	. 1	. 2	7	7
axinus pennsylvanica	green ash	Tree	14	14 3	4 4	4	5	2	2	3	5	5	5 2	2	2	3 3	3	6	6	6	1 1	1				2	2	2	2 2	2			1	41	41
ex decidua	oossumhaw	shrub																							1										
ıglans nigra	olack walnut	Tree			2		3								1													7							
	sweetgum	Tree			9																												3		
iodendron tulipifera t	uliptree	Tree			2	2	2	1	1	1			1								2 2	2	1	1	1						3	, 3	3	9	9
agnolia virginiana	sweetbay	Tree											1			1 1	1																	1	1
yssa sylvatica	olackgum	Tree			1	1	2											2	2	2	2 2	2				1	1	1	+ +					6	6
		Tree									1	1	1			1 1	1						1	1	1	2	2	2	2 2	2				7	7
runus serotina	plack cherry	Tree			2																														
	bak	Tree											1			1 1	1						1	1	1	2	2	2	1 1	1	2	2	2	7	7
uercus laurifolia	aurel oak	Tree									2	2	2																					2	2
uercus lyrata	overcup oak	Tree			4	4	4	1	1	1	5	5	5 2	2	2								1	1	1									13	13
uercus michauxii	swamp chestnut oak	Tree			1	1	1				1	1	1 1	1	1						1 1	1				3	3	3	2 2	2			1	9	9
uercus phellos	willow oak	Tree			1 2	2	2	4	4	4	2	2	2 2	2	2	1 1	1	1	1	1			1	1	1							-		13	13
	northern red oak	Tree									1	1	1		1													1	+ +					1	1
	olack willow	Tree								11							6											1	++						
·	Common Elderberry	Shrub								1																		1	++						
Ilmus americana	American elm	Tree													1					1								1	+ +						
nknown		Shrub or Tree																1	1	1														1	1
			14	14 5	3 15	15	22	9	9	22	17	17 1	3 12	12 1	5	7 7	13	13	13	17	8 8	9	8	8	20 1	.2	12 2	6	7 7	14	6	ξ	5 46	128	128
				1		1		-	1		1	1	1		-	1			1		1			1	-	1		-	1	·		1			12
				0.02		0.02		C	0.02		0.0	02	0.0)2	1	0.02			0.02		0.02		0.	02		0.0	2	1	0.02			0.02			0.30
			1	1	7 7	7	9	5	5	7	7	7	7 7	7	8	5 5	6	6	6	10	6 6	6	7	7	11	7	7	9	4 4	5	3	, 3	10	16	16
			566 6	566.6 214	5 607	607 8	200.2	364.2 3	64.2 89	10.2 (88 6	588 728.4	4 485.6 48	- c co	7 283	3 283.3	F 2 C 4	F2C 1	F2C 1	C00	323.7 323.7 3	CA 2 2		23.7 809	.4 485.	C 405	10	2 202	3 283.3	ECC C	242 0	242 5	1962	431.7	431.7 9

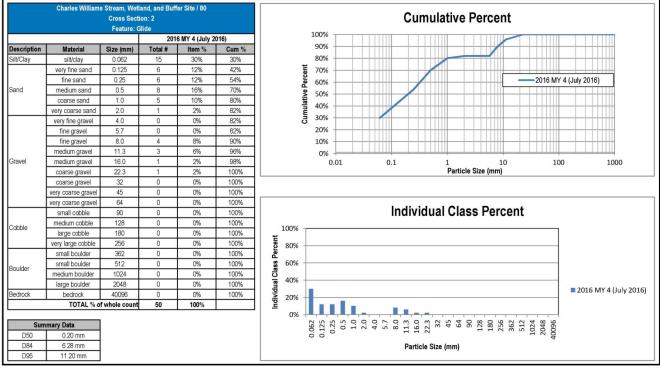

Table 9. Planted and Total Stem Counts (Species by Plot with Annual Means)

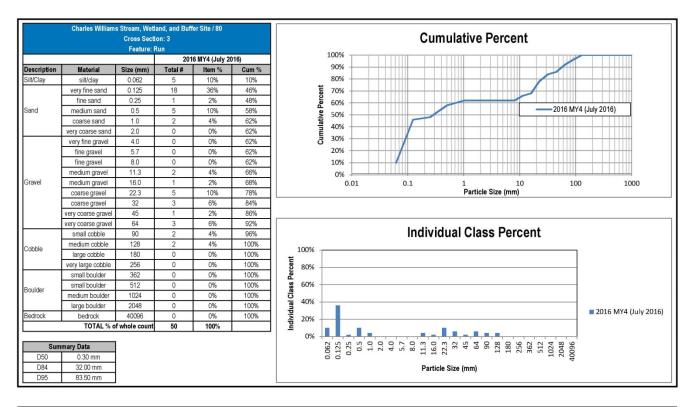

Color for Density

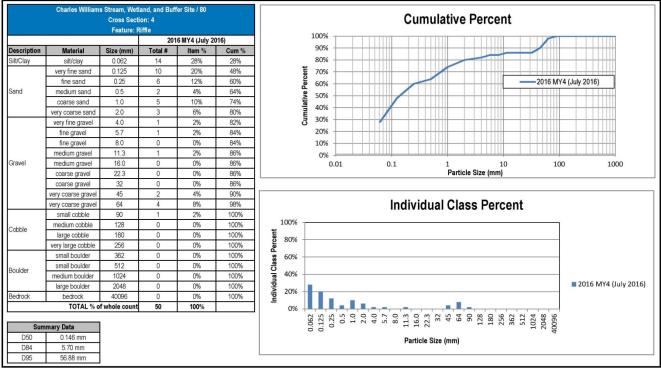

Exceeds requirements by 10% Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% Fails to meet requirements by more than 10%

APPENDIX D


Stream Survey Data


River Basin:	Cape Fear	Station	Elevation	
Watershed:	UT Sandy Creek, MY-04	0	551.2969	
XS ID:	XS 4, Riffle, STA. 27+14	10.38232244	551.3332	
Drainage Area (sq mi):	4.9	18.07253517	551.8791	
Date:	7/20/2016	22.98890328	551.9537	
Field Crew:	D. Cooper, W. Turner	26.14281997	550.668	
		27.60705816	548.9428	
SUMMARY DATA		30.94217049	548.6789	A REAL AND A
Bankfull Elevation:	551.7	35.54627415	549.2461	
Bankfull Cross Sectional Area:	39.6	36.29066438	550.0774	くいたいというという
Bankfull Width:	22.8	39.3720052	550.3627	
Flood Prone Area Elevation:	554.8	46.44505889	551.0234	
Flood Prone Width:	200+	53.17861218	552.0355	
Max. Depth at Bankfull:	3.0	65.39339607	552.2557	
Mean Depth at Bankfull:	1.7			Stream Type: C5 Photograph facing downstream @ XS 4
Width/Depth Ratio:	13.1			
Entrenchment Ratio:	>8.0			
Bank Height Ratio:	1.1			
UT to Sandy Creek, Cross So	UT to Sandy Creek, Cross Section 4, Riffle, Station: 27+14			
560				
558				As-Built 2013
et) 556				
n 554	· · · · · · · · · · · · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••		
atio:				MY 2 9/16/14
248				Baseline Bankfull Monitoring Datum
546 + 10	00	ę	20 20	70 ••••• Floodprone Area
		40 Atanco (foot)		
		(leel) a		




Profile Reach (UT Sandy Creek Sta. 10+00 to 27+53)

Cross Section Pebble Count Exhibits

Image: field of the state of the s						l		Tab	Table 10a. Baseline Stream Data Summary	aseline	Stream	Data Sui	mmary												
Andread Andread <t< th=""><th>-</th><th></th><th></th><th></th><th></th><th>Chá</th><th>arles Willi</th><th>ams Strear</th><th>n, Wetland</th><th>, and Buff</th><th>er Site / 80</th><th>- UT to Sa</th><th>indy Creek</th><th>: 1,850 lin</th><th>ear feet</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	-					Chá	arles Willi	ams Strear	n, Wetland	, and Buff	er Site / 80	- UT to Sa	indy Creek	: 1,850 lin	ear feet										
Mar Tot Mar Mar <th>Parameter</th> <th>Gauge²</th> <th>Re</th> <th>gional Curve</th> <th>Ð</th> <th></th> <th></th> <th>re-Existing (</th> <th>ondition</th> <th></th> <th></th> <th></th> <th>Referen</th> <th>se Reach(es</th> <th>) Data</th> <th></th> <th></th> <th>Design</th> <th></th> <th></th> <th></th> <th>Monitoring</th> <th>Baseline</th> <th></th> <th></th>	Parameter	Gauge ²	Re	gional Curve	Ð			re-Existing (ondition				Referen	se Reach(es) Data			Design				Monitoring	Baseline		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dimension and Substrate - Riffle Only		3	п	Ēą	Min	Mean	Med	Max	sD ⁵	F		H	⊢	⊢	H	Min	Med	Max	Min	Mean	Med	Max	sD ⁵	Ľ
1 1							25.2											25.2		22	23.5	24.9	24.9		2
1 1	Floodprone Width (ft)						>300				+							>300		63	>131	200+	200+		2
1 1	Bankfull Mean Depth (ft)						1.58				1							1.59		-	1.3	1.5	1.5		2
1 1	¹ Bankfull Max Depth (ft)						2.6				1							2.6		1.7	2.3	2.8	2.8		2
1 1	Bankfull Cross Sectional Area $({ m ft}^2)$						40.0				1							40		21.7	28.9	36.1	36.1		2
1 1	Width/Depth Ratio						15.8				1							15.8		>15	>15	>15	>15		2
1 1	Entrenchment Ratio						>15				1							>15		2.9	7.5	8.4	8<		2
1 1	¹ Bank Height Ratio						1.0				+							1.0		1.0	1.0	1.0	1.0		2
1 1	Profile							•		•							r					•			
0 1 0	Riffle Length (ft)									-										39	51.5	51.5	64		2
80 1 1 1 1 1 10 </th <th>Riffle Slope (ft/ft)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.013</th> <th></th> <th></th> <th></th> <th>+</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.013</th> <th></th> <th>0.26</th> <th>0.28</th> <th>0.28</th> <th>0.3</th> <th></th> <th>2</th>	Riffle Slope (ft/ft)						0.013				+							0.013		0.26	0.28	0.28	0.3		2
1 1 <th>Pool Length (ft)</th> <th></th> <th></th> <th></th> <th></th> <th>8.3</th> <th>30.5</th> <th></th> <th>63.7</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>30.5</th> <th></th> <th>168</th> <th>198</th> <th>196</th> <th>232</th> <th>27.5</th> <th>4</th>	Pool Length (ft)					8.3	30.5		63.7									30.5		168	198	196	232	27.5	4
90 1 </th <th>Pool Max depth (ft)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>3.4</th> <th></th> <th></th> <th></th> <th>+</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>3.4</th> <th></th> <th>3.1</th> <th>3.5</th> <th>3.4</th> <th>4.25</th> <th></th> <th>4</th>	Pool Max depth (ft)						3.4				+							3.4		3.1	3.5	3.4	4.25		4
623 10 <th10< th=""> 10 10 10<</th10<>	Pool Spacing (ft)					56.0	116.0		94.0									116.4		158	372	239	719		3
23 1	Pattern																								
860 1 <th1< th=""> 1 1 1</th1<>	Channel Beltwidth (ft)					31.7	44.9		62.3	┢							31.7	44.9	62.3	40	74.5	78.5	101	24.8	4
38 1 </td <th>Radius of Curvature (ft)</th> <td></td> <td></td> <td></td> <td></td> <td>15.0</td> <td>37.8</td> <td></td> <td>95.0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>15</td> <td>37.8</td> <td>95</td> <td>19</td> <td>60.5</td> <td>58</td> <td>107</td> <td>31.5</td> <td>4</td>	Radius of Curvature (ft)					15.0	37.8		95.0								15	37.8	95	19	60.5	58	107	31.5	4
2160 1 1 21 13<	Rc:Bankfull width (ft/ft)					0.6	1.5		3.8								0.6	1.5	3.8	0.9	2.7	2.6	4.8	1.4	4
86 13 13 13 12 31 13 13 13 13 13 13 14 14 14 14 15 14 15 15 14 14 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16	Meander Wavelength (ft)					73.0	133.8		216.0								73	133.8	216	86	149.25	121.5	268	70.1	4
6 1 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	Meander Width Ratio					2.9	5.3		8.6			_	_	_	_	_	1.3	1.8	2.5	3.9	6.7	5.5	12	3.1	4
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Transport parameters																								
Second control								0.142			-						L					0.0	2		
Image: constraint of the state of	Max part size (mm) mobilized at bankfull							2.0														2.0			
C C 0 C 1 375 1 375 1 375 1 135 1 1450 1 1450 1 1650 1 1650 1 1060 1 00014 1 00015 1 00014 1 00014 1 00014 1 00014 1 00014 1 00014 1 00014 1 00014 1 00014 1 0014 1 0014 1 0014 1 0014 1 0014 1 0014 1 0014 1 0014 1 0014 1 0014 1 0014 1 0014	Stream Power (transport capacity) W/m ²																								
CC CC 0 3.75 1 3.75 1 1.0 1 0.0013 1 0.0013 1 1.0 1 1.0 1 1.0 1 1.0 1	Additional Reach Parameters										-														
375 375 5 375 6 105 7 105 7 106 8 00014 9 00014 9 00014 9 00013 9 10 9 10 9 10 9 10	Rosgen Classification							C5									L	C5				CE			
0 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	Bankfull Velocity (fps)							3.9										3.75				3.0	5		
4 180 180 180 4 1.06 1.06 1.06 1.01 1.06 0.014 0.014 1.01 0.0013 0.0013 0.0013 1.01 0.0013 0.0013 0.0013 1.01 0.0013 0.0013 0.0013	Bankfull Discharge (ds)							150.0																	
4 1850 1850 4 106 106 101 0.0014 0.0013 101 0.0013 0.0013 <th>Valley length (ft)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1961</th> <th></th>	Valley length (ft)							1961																	
4 1.06 4 0.014 0.014 0.014 0.011 0.013 0.011 0.014 0.011 0.011 0.011	Channel Thalweg length (ft)							1850										1850				185	0		
4 0.0014 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0013 0.0013 1 0.0013 0.0014 0.0014 1 0.0013 0.0014 0.0014 1 0.0014 0.0014 0.0014 1 0.0014 0.0014 1 0.0014 0.0014 <td< th=""><th>Sinuosity (ft)</th><th></th><th></th><th></th><th></th><th></th><th></th><th>1.06</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>1.06</th><th></th><th></th><th></th><th>1.0</th><th>6</th><th></th><th></th></td<>	Sinuosity (ft)							1.06										1.06				1.0	6		
SGS gauge in-line with the project reach (added bankfull verification - rare). 0.0013 0.0013	Water Surface Slope (Channel) (ft/ft)							0.001										0.0014				0.00	13		
PartILI Floor/pair Area (acres) PartILI Floor/	BF slope (ft/ft)																	0.0013				0.00	13		
⁴ /s of Reach with Eroding Banks Image: Channel Stability or Habitat Metric Image: Channel Stability or Habitat Metric Image: Channel Stability or Habitat Metric Channel Stability or Habitat Metric Biological or Other Image: Channel Stability or Habitat Metric Image: Channel Stability or Habitat Metric Staded cells indicate that these will typically not ber Image: Channel Stability or Habitat Metric Image: Channel Stability or Habitat Metric Image: Channel Stability or Habitat Metric 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with the project reach (added bankfull verification - rare). 3. Ulticity survey data to the the of the terrace iser/slope. 3. Ulticity survey can are stratenel for the section survey and the top of the terrace iser/slope.	³ Bankfull Floodplain Area (acres)																								
Channel Stability or Habitat Metric Channel Stability or Habitat Metric Channel Stability or Habitat Metric Biological or Other Biological or Other Element of the metric Element of the metric Shaded cells indicate that these will typically not be filled in. E = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare). 3. Ultizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the formation from the cross-section survey and the terrace fiser/slope. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).	⁴ % of Reach with Eroding Banks																								
Biological or Other Biological or Other Biological or Other Shaded cells indicate that these will typically not be filled in. I = The distributions for these parameters can include information from both the coss-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare). 3. Ulticate survey can be accessed on a cost of the bank to the top of bank to the cost of the terrace riser/slope. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).	Channel Stability or Habitat Metric																								
Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare). 3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace fiser/slope.	Biological or Other																								
1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare). 3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the terrace riser/slope.	Shaded cells indicate that these will typically not be filled in.																								
	1 = The distributions for these parameters can include information from b 3 Thilining curves what produce an estimate of the brackful floodelpin zero.	ooth the cross-se	ection survey:	s and the lon	gitudinal prof	ile. 2 = For	projects with	i a proximal U o risor/slone	SGS gauge in	-line with the	project reach	(added bankf	ull verification	- rare).											
	 Unitality survey data produce an estimate of the banknum mouphain als. Promotion of reach exhibition hanks that are conding back on the vis 	sa III acres, willo	ri sriouiu pe i	monitoring (une top or be	irik iu trie lue	on the terrat	e Ilsel/slope. ovronde 3																	

10 10). Bas(eline S	Strean Chi	n Data arles W	a Sum /illiams	Stream	<mark>, Wetla</mark>	strate, ind, and	10b. Baseline Stream Data Summary(Substrate, Bed, Bank, and Hydrologic Containment F Charles Williams Stream, Wetland, and Buffer Site / 80 - UT to Sandy Creek: 1,850 linear feet	3ank, ite / 80	and H	ydrolc Sandy (ogic Co Creek: 1	ontain ,850 line	ment I ear feet	ainment Parameter Distributions) 0 linear feet	eter D	istribu	tions)						
		Pre	Pre-Existing Condition	ing Col	ndition				Refe	erence	Reference Reach(es) Data	(es) Dar	ā				õ	Design				As-b	As-built/Baseline	seline	
%	3 1% 8	84%	4%	11%	%0															 11%	%09	60% 14%	15%	%0	
%	3 %2 %i	83% 1	10%	%0	%0	%0																			
ک	0.12 0.34 0.55 1.70 3.60	0.34 (0.55	1.70	3.60	<2.0 <2.0	<2.0																		
10	0	0	0	0	1850															 0	0	200	0	1650	
0	1850	0	0	0																1850	0	0	0		

1 = Riffle, Run, Pool, Gide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates 3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Table 10

Parameter

¹Ri% / Ru% / P% / G% / S%

¹SC% I Sa% I G% I C% I B% I Be%

¹d16 / d35 / d50 / d84 / d95 / di^p / di^{sp} (mm)

²Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10

³Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0

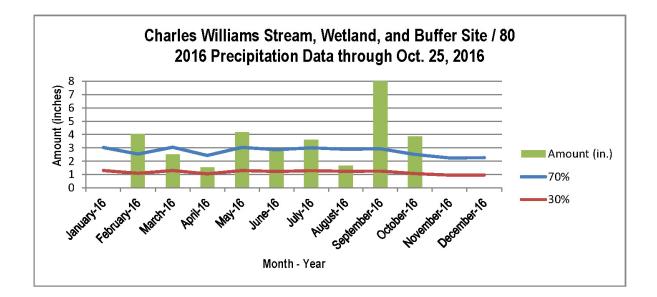
Shaded cells indicate that these will typically not be filled in.

		Ţ	able 11	la. Mo	Table 11a. Monitoring Data - Dimensional Morphology Summary (Dimensional Para Charles Williams Stream, Wetland, and Buffer Site / 80 - UT to Sandy Creek: 1,850 li	g Data ırles Wi	- Dime liams Sti	eam, W	al Morț etland, a	oholog nd Buffe	y Sum ۶r Site / ۶	mary (L 10 - UT to	Jimens Sandy (ional I :reek: 1,	ring Data - Dimensional Morphology Summary (Dimensional Parameters Charles Williams Stream, Wetland, and Buffer Site / 80 - UT to Sandy Creek: 1,850 linear feet	ters - C r feet	ross S	meters - Cross Sections) near feet	(\$								
			Cross	Cross Section 1 (Riffle)	(Riffle)					Cross S	Cross Section 2 (Glide)	Glide)					ross Sect	Cross Section 3 (Run)					Cros	Cross Section 4 (Riffle)	4 (Riffle)		
Based on fixed baseline bankfull elevation	Base	1 Y M	MY2	MY3	MY4	37M	+γM	Base	MY1	MY2	MY3	MY4	MY5	+ΥM	Base M	MY1 M	MY2 MY	MY3 MY4	4 MY5	r5 MΥ+	+ Base	MY1	MY2	MY3	MY4	3YM	+ΥM
Record elevation (datum) used													ļ														
Bankfull Width (ft)	22.0	22.6	23.9	24.0	19.9			19.6	20.5	19.4	21.8	20.8			22.6 1	18.8 20.1	.1 22.4	22.1			24.9	24.5	24.1	24.2	22.8		
Floodprone Width (ft)	63.0	65.4	66.1	66.1	>100			200+	200+	200+	200+	200+			200+ 20	200+ 20	200+ 200+	0+ 200+	+		200+	- 200+	200+	200+	200+		
Bankfull Mean Depth (ft)	1.0	1.0	6.0	1.1	1.3			1.7	1.6	1.8	1.7	1.8			1.6 1	1.5 1.7		1.6 1.4			1.5	1.5	1.5	1.8	1.7		
Bankfull Max Depth (ft)	1.7	1.6	1.8	1.9	2.5			2.5	2.8	3.1	2.8	2.4			2.8 2	2.8 3	3.16	16 3.0			2.8	2.9	2.9	3.1	3.0		
Bankfull Cross Sectional Area (ft ²)	21.7	22.5	22.7	25.6	25.6			33.4	32.8	35.3	36.7	36.4		-	36.4 2	29.0 33	33.5 36.	36.5 30.4	4		36.1	37.8	37.1	42.7	39.6		
Bankfull Width/Depth Ratio	22.3	22.7	25.2	22.6	>12			11.5	12.9	10.7	12.9	11.9			14.0 1	12.2 12.1	.1 13.7	8.7 >12.0	0.		16.6	15.8	15.6	13.7	>12.0		
Bankfull Entrenchment Ratio	2.9	2.9	2.8	2.8	>2.2			>10.0	>10.0	>10.0	>10.0	9.6			>8.0	>8.0 >8	>8.0 >8.	>8.0 >8.0	0		>8.0	>8.0	>8.0	>8.0	>8.0		
Bankfull Bank Height Ratio	1.0	1.0	1.0	1.0	1.0			1.1	1.1	1.0	1.0	1.0			1.0 1	1.0 1.	1.0 1.0	.0 1.0			1.0	1.0	1.0	1.0	1.1		
Based on current/developing bankfull feature																											
Record elevation (datum) used																											
Bankfull Width (ft)																											
Floodprone Width (ft)																											
Bankfull Mean Depth (ft)			These co	ells may	or may no	J.																					
Bankfull Max Depth (ft)			year. Se	population se footno	require population in any given year. See footnote 2 below																						
Bankfull Cross Sectional Area (ft ²)																											
Bankfull Width/Depth Ratio																											
Bankfull Entrenchment Ratio																											
Bankfull Bank Height Ratio																											
Cross Sectional Area between end pins $(\mathrm{f}t)$																											
d50 (mm)																											
$1 \equiv Widths$ and deaths for monitoring resurves will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acouite the datum used	ankfull dat	im regard	less of dim	ensional/de	enositional	Heveloome	ant Input th	ne elevation	n used as t	he datum. V	which shou	Id he consis	stent and h	th on the	e haseline d	atum octabl	shad If the	a narformar	hac inhar	ited the nro	ient and nar	aconic	o the dation	poor c			

1 = Widths and depths for monitoring resurvey will be based on the baseline bankfull datum regardless of dimensional/depositional development. Input the elevation used as the datum, which should be consistent and based on the baseline datum established. If the performer has inherited the project and cannot acquire the datum used as the datum used as the datum has been consistent and based on the based with EEP. If this cannot be resolved in time for a given years report submission a footnote in this should be included that states: "It is uncertain if the monitoring datum has been consistent over the monitoring history, which may influence calculated values. Additional data from a prior 2 = Based on the elevation of any dominant depositional feature that develops and is observed at the time of survey. If the baseline datum remains the only significant depositional feature fractional feature at a subserved at the time of survey. If the baseline datum remains the only significant depositional feature at a subserved at the time of survey. If the baseline datum remains the only significant depositional feature at the time of survey. If the baseline datum remains the only significant depositional feature at the time of significance develops above or below the baseline bankfull datum then this should be tracked and quantified in these cells. performer is being acquired to provide confirmation. Values will be recalculated in a future submission based on a consistent datum if determined to be necessary."

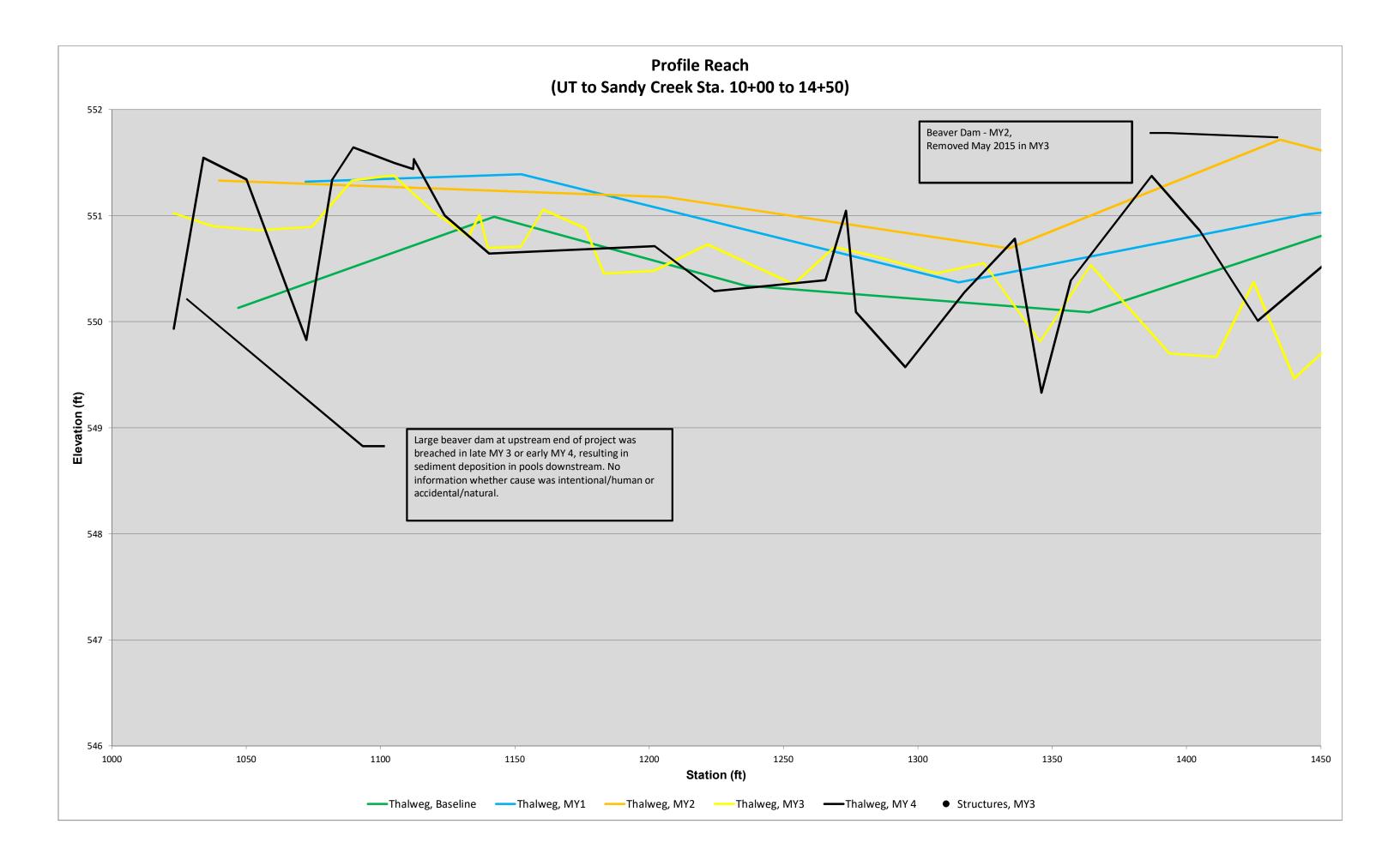
Term the structure of								l		L	11h alc	Monite	Jring D	ata - Stre	am Re	ach Da	ita Sum	marv						I	1		I						
Image: field biase in the problem of the pr									C	arles Wil	liams Stre	am, Wetl	and, and	Buffer Site	over 11.02 و 1/ 80 - UT	T to Sanc	du Creek:	1,850 lir	iear feet														
Image: field of the conditionant of the conditis and the conditis and the conditionant of the condition	Parameter		B	iseline					MY-1					AIW	5					MY- 3		-			-YM	4	-		-	-	MY- 5	-	
		H	E	H	1		E	- -	H	H	ŀ	:	:	:					_	-	_		:			:	4					+	
matrix matrix<					SD⁴	۲		Mean				Min	Mean	Med		SD⁴						<u>د</u>	Min	Mean	Med	Max	SD ⁴					< SD ⁴	+ T
Maravaline (2	22.6	23.5		14.5	2	23.9	24.0	24.0	24.1						2	2	19.9	21.4	22.8	22.8		2					
matrixeriori 1 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>2</th> <th></th> <th></th> <th></th> <th>+00,</th> <th>2</th> <th>66.1</th> <th>>133</th> <th>200+</th> <th>200+</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>t,</th> <th>2</th> <th>100+</th> <th>>150</th> <th>200+</th> <th>200+</th> <th></th> <th>2</th> <th></th> <th></th> <th></th> <th></th> <th></th>						2				+00,	2	66.1	>133	200+	200+						t,	2	100+	>150	200+	200+		2					
matrix i <th></th> <th>-</th> <th></th> <th>1.5</th> <th></th> <th>2</th> <th>1.0</th> <th>1.3</th> <th></th> <th>1.5</th> <th>2</th> <th>0.9</th> <th>1.2</th> <th>1.2</th> <th>1.5</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>~</th> <th>2</th> <th>1.3</th> <th>1.6</th> <th>1.8</th> <th>1.8</th> <th></th> <th>2</th> <th></th> <th></th> <th></th> <th></th> <th></th>		-		1.5		2	1.0	1.3		1.5	2	0.9	1.2	1.2	1.5						~	2	1.3	1.6	1.8	1.8		2					
Building (1) C <thc< th=""> C <thc< th=""> C</thc<></thc<>				2.8		2	1.6	2.5		2.9	2	1.8	2.35	2.35	2.9							2	2.4	2.7	3.0	3.0		2					
(monume (monume <t< th=""><th></th><th></th><th></th><th></th><th></th><th>2</th><th>22.5</th><th>30.5</th><th></th><th>7.8</th><th>2</th><th>22.7</th><th>29.9</th><th>29.9</th><th>37.1</th><th></th><th></th><th></th><th></th><th></th><th>7</th><th>2</th><th>25.6</th><th>32.6</th><th>39.6</th><th>39.6</th><th></th><th>2</th><th></th><th></th><th></th><th></th><th></th></t<>						2	22.5	30.5		7.8	2	22.7	29.9	29.9	37.1						7	2	25.6	32.6	39.6	39.6		2					
Important Important <t< th=""><th></th><th></th><th></th><th>>15</th><th></th><th>2</th><th>>15</th><th>>15</th><th></th><th>•15</th><th>2</th><th>>15</th><th>>15</th><th>>15</th><th>>15</th><th></th><th></th><th></th><th></th><th></th><th>9</th><th>2</th><th>11.9</th><th>>12.0</th><th>>12.0</th><th>>12.0</th><th></th><th>2</th><th></th><th></th><th></th><th></th><th></th></t<>				>15		2	>15	>15		•15	2	>15	>15	>15	>15						9	2	11.9	>12.0	>12.0	>12.0		2					
Image: field in the f				%		2	2.9	>5.4		8^	2	2.8	>5.4	8<	8<							2	>2.2	>2.2	>2.2	>2.2		2					
1 1				1.0		2	1.0	1.0		1.0	2	1.0	1.0	1.0	1.0							2	1.0	1.1	1.1	1.1		2					
Image Image <th< th=""><th>Profile</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Profile																																
Integrating				-				75.34	-			88.9	127.7	123.7		26.9							40	80	50	150		3					
matrix matrix<												0.004				0.004							0.004	0.007	0.007	0.01		e					
Polluture 1										33.6	2	115.8			139.6						9	2	45	49	50	50		e					
Parametric Paramet				4.3		4	0.8	1.5		2.3	2	2.0	2.0	2.0	2.0						8	2	3.1	4.6	5.1	5.5		3					
Channel Behvicht (6) 400 745 785 1010 248 4 </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>33.6</th> <th>-</th> <th>975.2</th> <th></th> <th></th> <th>975.2</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>2</th> <th>-</th> <th>460</th> <th>835</th> <th>1210</th> <th>1210</th> <th></th> <th>2</th> <th></th> <th></th> <th></th> <th></th> <th></th>										33.6	-	975.2			975.2						2	-	460	835	1210	1210		2					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Pattern																																
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			_	-		4																											
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						4										a Ilini oto	100100 4 400					iococip		n profil									
$ \left \begin{array}{c c c c c c c c c c c c c c c c c c c $				4.8	1.4	4									מופוח מי	ala will I	ior iypica	liy be co	significa	intess vi: Int shifts	from bas	eline	Jilal uale		d uala III	Inicale							
1 1 <th></th> <th></th> <th></th> <th></th> <th></th> <th>4</th> <th></th> <th>F</th> <th></th> <th>-</th> <th></th>						4												F		-													
Image: constraint of the constraint				12.0	3.1	4																											
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																																	
C5 134 136 13 134 134 134 134 5% 8% 15% 8% 15% 15% 15% 15% 5% 8% 15% 15% 15% 15% 15% 15% 15% 5% 8% 15% 15% 15% 15% 15% 15% 15% 14 15% 15% 15% 15% 15% 15% 15% 15% 15% 15%	Additional Reach Parameters																																
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Rosgen Classification			C5					C5					C5						C5					C5								
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Channel Thalweg length (ft)			1748					1748					1748						1748					174	8							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sinuosity (ft)			1.06					1.06					1.06						1.06					1.0	ő							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Water Surface Slope (Channel) (ft/ft)		0	.0013					0.0013					0.001	8					0.0017					0.00	13							
2% 80% 12% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 80% 12% 2% 12% 2% 12% 2% 12% 2% 12% 2% 12% 2% 12% 2% 12%	BF slope (ft/ft)		0	.0013					0.0013					0.001	0,					0.0015					0.00	14							
							5%	80%	15%			5%	80%	15%			۲.			%			7%	5%	8%								
	³ SC% / Sa% / G% / C% / B% / Be%																																
	³ d16 / d35 / d50 / d84 / d95 /																																
Channel Stability or Habitat Metric Channel Stability or Habitat Metric Biological or Other Biological or Other	² % of Reach with Eroding Banks			0					0					0						0					0								
Biological or Other Shaded cells indicate that these will typically not be filed in.	Channel Stability or Habitat Metric																																
Shaded cells indicate that these will typically not be filled in.	Biological or Other																																
1 = The Aistributions for these parameters can include information from hold the processoriton survive and the Internation from the Aistributions for these parameters can include information from the Aistribution for th	Shaded cells indicate that these will typically not be filled in. 1 = The distributions for these narameters can include information from both the processerion survous and the broniturinal profile	the croce	eention sum	ave and the	Innoitudinal	h nnfila																											

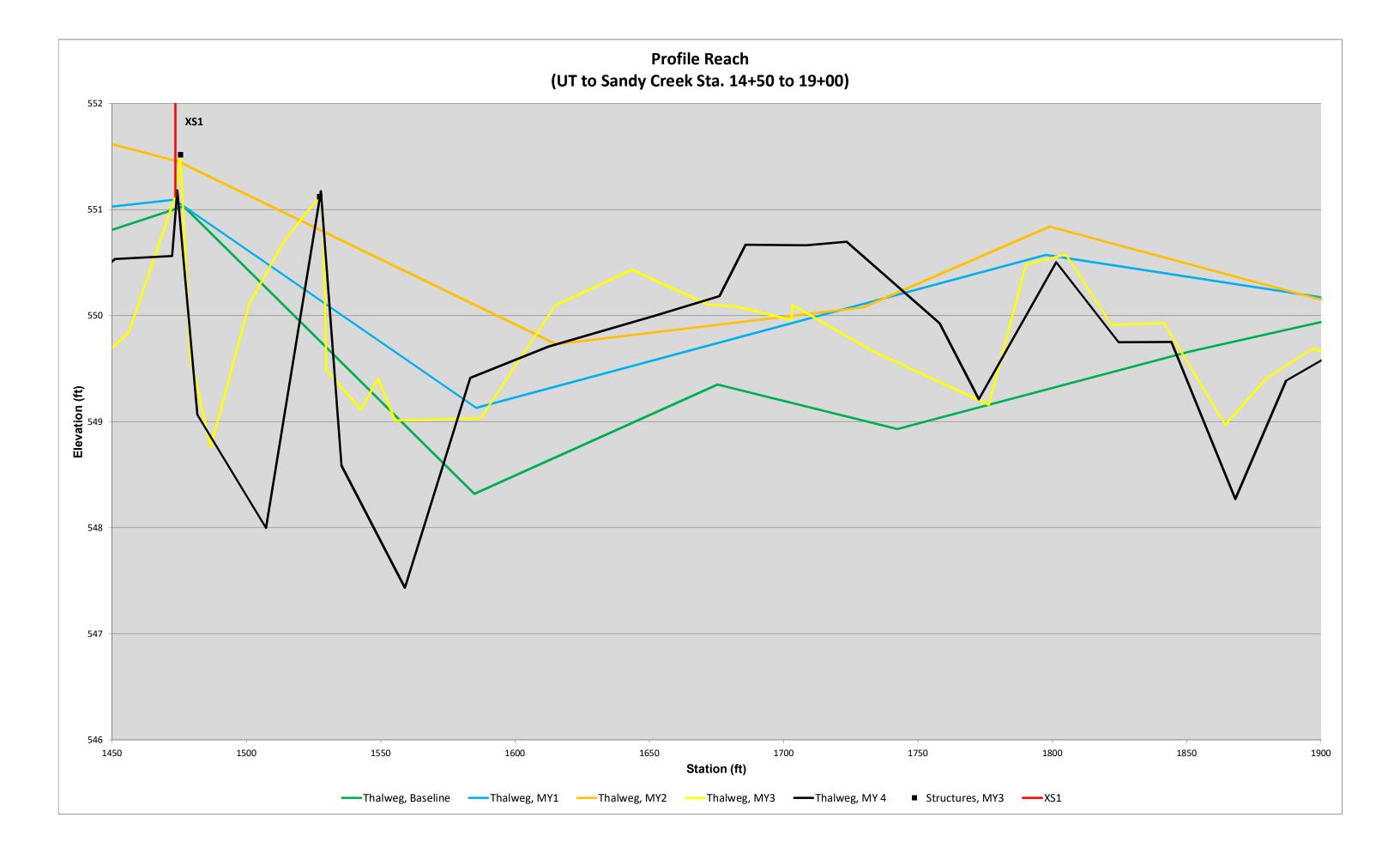
1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile.
2 = Proportion of reach exhibiting banks that are eroding based on the visual survey from visual assessment table
3 = Riffle, Run, Pool, Glide, Step: Slit/Clay, Sand, Gravel, Cobble, Boulder, Bedrock: dip = max pave, disp = max subpave
4. = Of value/needed only if the n exceeds 3

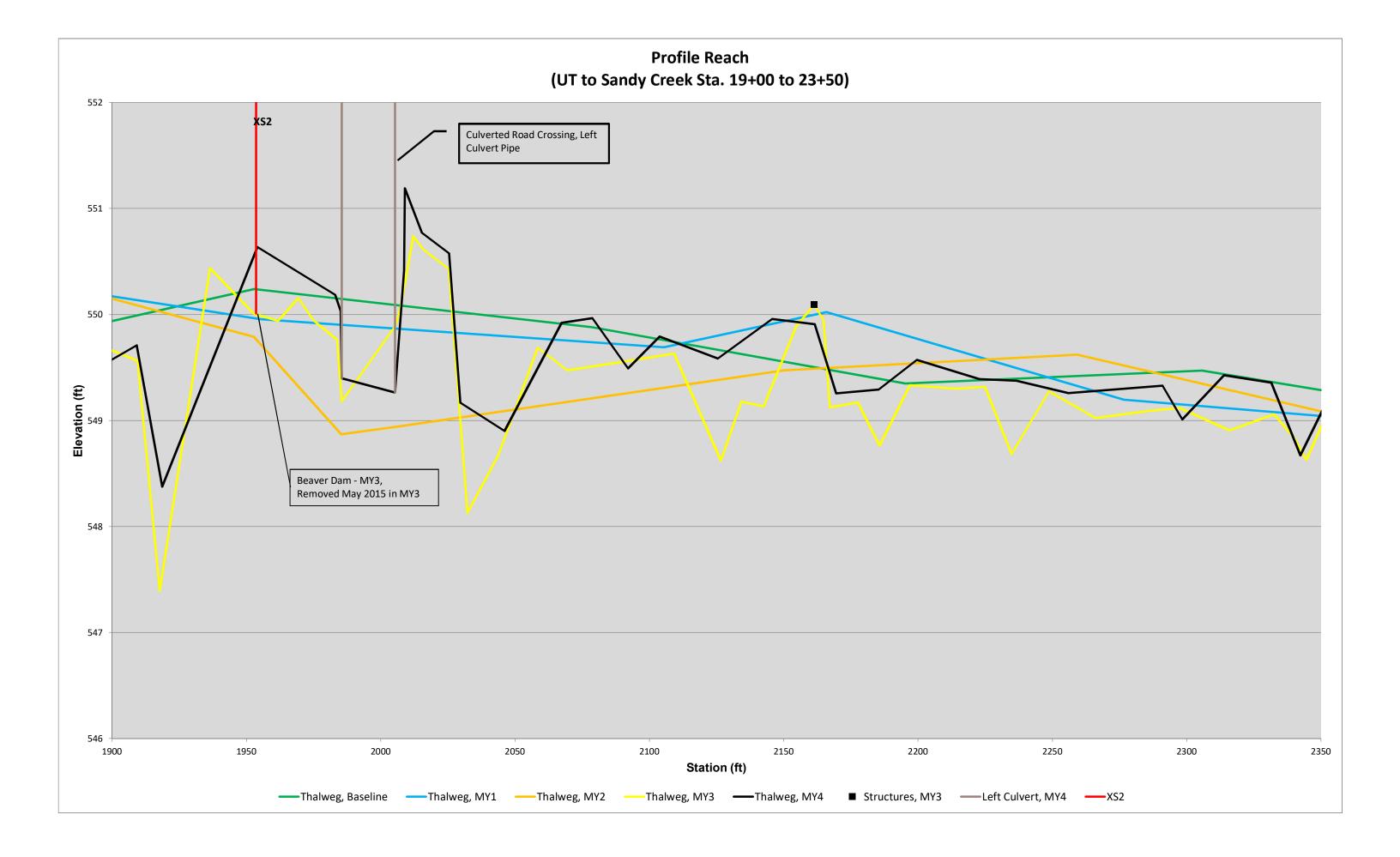

APPENDIX E

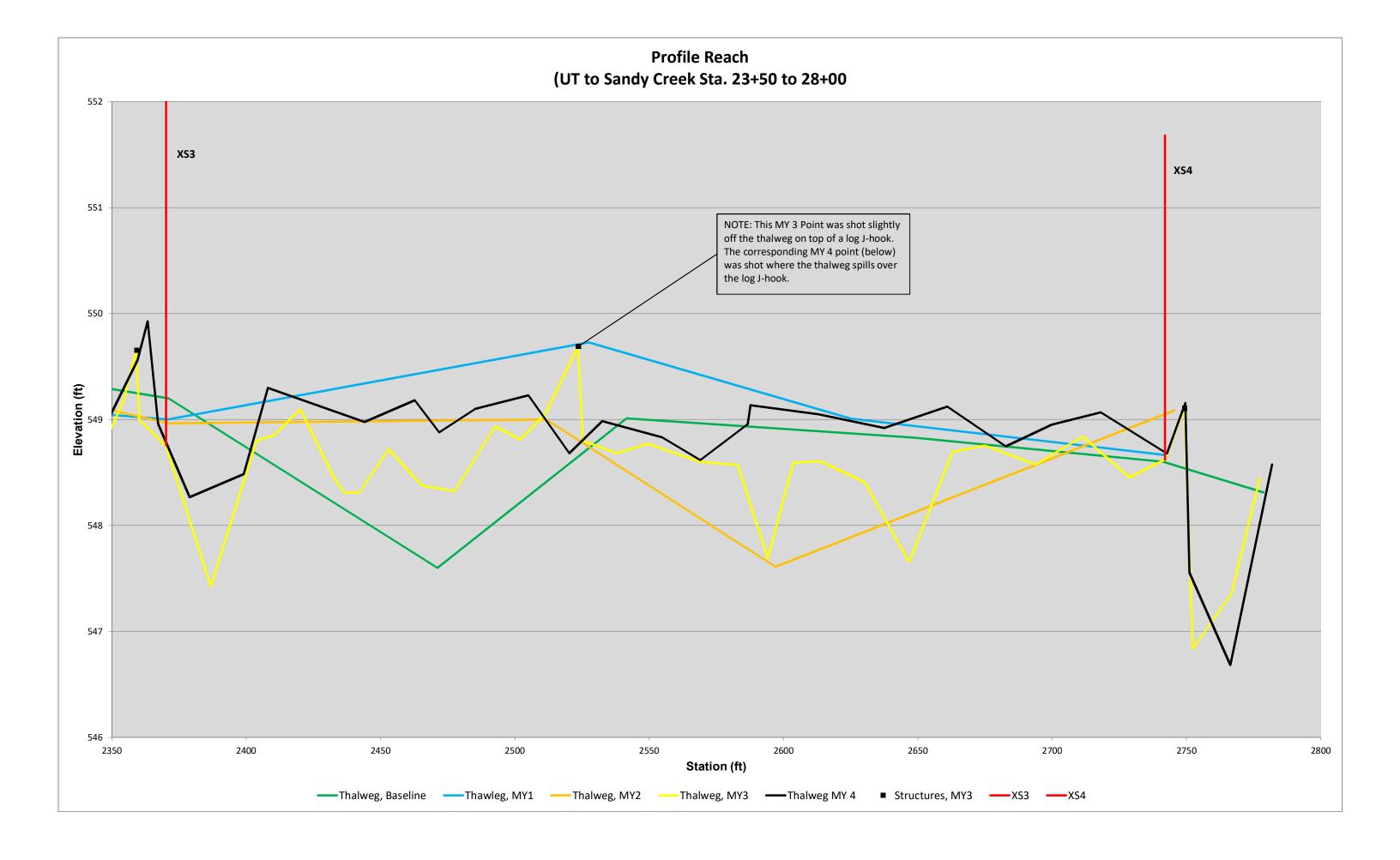
Hydrology Data

Table 12. Verification of Bankfull Events


Charles Williams Stream, Wetland, and Buffer Site / 80 - UT to Sandy Creek: 1,850 linear feet


Date of Data Collection	Date of Occurrence	Method	Photo # (if available)
11/6/2013	unknown	Crest Gauge	Not Available
3/6/2014	unknown	Visual On-site (wrack)	Not Available
9/16/2014	unknown	Crest Gauge	Not Available
4/17/2015	4/17/2015	Visual On-site (active overbank event)	Not Available
6/30/2015	unknown	Visual On-site (wrack, sediment staining, alluvial deposits)	Not Available
2/18/2016	unknown – likely caused by beaver dam breach	Visual On-site (wrack, sediment staining, alluvial deposits, flattened vegetation)	Overbank 1,2,3
7/20/2016	unknown	Visual On-site (log jam from previous high flow event)	Overbank 4




APPENDIX F

Detailed Thalweg Profile

